t分布与t检验的一点理解

t分布与t检验的一点理解

        最近又遇到了t分布及t检验方面的内容,发现有些地方自己当初没有很明白,就又查了些资料,加深了一下自己的理解,这里也将自己的一些理解记录下来。

1. 理论基础——大数定理与中心极限定理

       在正式介绍t分布前,还是再强调一下数理统计学中的两大基石般的定理:大数定理与中心极限定理,后面会用到。这里我就不以数学公式的方式来说明了,直接说一下两个定理所表达的意思。

  • 大数定理。不管是强大数定理还是弱大数定理,都表达着这样一个意思:当样本数量足够大时,这些样本的均值无限接近总体的期望。  
  • 中心极限定理。不管样本总体服从什么分布,当样本数量足够大时,样本的均值以正态分布的形式围绕总体均值波动。中心极限定理的表达方式可以有多种,我这里只是其中一种。

2. t 统计量

       t 统计量是英国化学家、数学家、统计学家 William Sealy Gosset提出的,当年他在爱尔兰的吉尼斯酒厂(这个酒厂还有个很牛的事儿,它的老板编著了现今著名的《吉尼斯世界纪录》)工作时,酒厂禁止其将研究成果公开发表,以免泄露秘密,迫不得已William Sealy Gosset以笔名“The Student”发表研究成果,t统计量及t分布的命名就是源于改笔名。

      大麦是酿造啤酒的主要原料,因此酒厂就希望大麦产量越高越好,于是就不断改进大麦种植工艺,此时就需要做试验来比较不同工艺下大麦的产量,但是实际条件不允许(或者为了减轻工作负担)大面积种植麦子来比较工艺的优劣,因此试验田种植是比较合适的方式。比如现在有两片试验田(如下图所示),左边的是采用工艺A种植的麦子,右边的是采用工艺B种植的麦子,两边各种100株麦子。下面我要开始编故事啦。。。

                                                      t分布与t检验的一点理解t分布与t检验的一点理解

       现在发现左边麦田中平均每株麦穗上有100粒麦子,右边麦田中平均每株麦穗上有120粒麦子,这说明啥?说明采用工艺B能得到更高的麦子产量对不?咱们外行可能会这么看,但是人家专业的可不轻易这么认为。这是采用小面积的试验田种出的麦子,一个是量少,不足以说明问题(想想咱们的大数定理),另一个是无法保证除工艺区别外其它因素都一样。因此,William Sealy Gosset就想,这20粒麦子的差值能不能说明工艺的优劣问题呢?

       William Sealy Gosset知道,每株麦穗上的平均麦子数是有波动的,可能这一次种的麦子平均值是100,下一次就不一定了,可能就是105,也可能是95。那可以这样考虑啊,这20的差值是不是在工艺A下麦子平均产量的正常波动范围内?样本均值的波动可以用样本均值的标准差表示,注意:这里说的是样本均值的标准差,而不是样本的标准差,基于这种想法可以构造这样一个统计量

                                                                                             \frac{\bar{u}_{A}-\bar{u}_{B}}{S_{\bar{u}_{A}}}

       来评估工艺的优劣,其中\bar{u}_{A}是工艺A下每株麦穗上结的麦子数,\bar{u}_{B}是工艺B下每株麦穗上结的麦子数,s_{\bar{u}_{A}}是工艺A下每株麦穗上结的麦子数平均值的标准差。好了,到了这里故事也编得差不多了,t 统计量的由来也差不多就这样了,下面咱们严谨的定义一下 t 统计量,分两种情况,一种是单总体情况,另一种是双总体情况。

  • 单总体情况。这种情况下 t 统计量的定义为

                                                                                        t=\frac{\bar{X}-u_{0}}{\sigma /\sqrt{N}}

       式中\bar{X}为样本的均值,u_{0}为总体的均值,\sigma为总体标准差,N为样本个数,由于总体标准差无法得知,因此一般用样本标准差S来估计总体标准差。从数学上可以证明,若样本个数为N,样本均值的标准差(样本均值的波动)等于总体的标准差(总体波动)除以样本个数N,我们可以通过大数定理来简单理解一下,当样本个数增大时,样本均值的波动也应该是越小的。总体的标准差是无法获知的,一般用样本标准差来估计。这里着重强调一个概念——标准误,标准误即样本均值的标准差,它对于理解假设检验很重要。

  • 双总体的情况。这种情况下t 统计量的定义为

                                                                                    t=\frac{\bar{X_{1}}-\bar{X_{2}}}{S_{ \bar{X_{1}}-\bar{X_{2}} } }

       式中\bar{X_{1}}为样本1的均值,\bar{X_{2}}为样本2的均值,S_{ \bar{X_{1}}-\bar{X_{2}} }为样本1与样本2均值差值的标准误。这里我不再说明S_{ \bar{X_{1}}-\bar{X_{2}} }是怎么计算的了,一个原因是比较复杂,需要分几种情况讨论,另一个更主要的原因是S_{ \bar{X_{1}}-\bar{X_{2}} }如何计算不重要,计算机内置函数会帮我们计算的,重要的是理解 t 统计量是如何提出的以及表示什么意思。

3. t 分布与正态分布

        t 统计量的分布就是 t 分布了,下面我们以单总体时的 t 统计量为例,说明一下 t 分布与正态分布的关系。我们已经知道了样本的均值为\bar{X},也知道\bar{X}的标准差为S/\sqrt{N},那么依据中心极限定理,样本均值\bar{X}服从均值为u_{0},方差为S^{2}/N的正态分布,也许你已经发现了,没错,当样本数量足够大时,t 分布无限接近标准的正态分布N(0,1)

        在第一节中也强调了,不管是大数定理还是中心极限定理,都是在样本数量足够大时管用的。在样本数量不是足够大时,尽管t 分布的概率密度曲线和正态分布N(0,1)分布曲线相近,但是还是有所区别,用样本标准差估计总体标准差是一个原因。

                                                t分布与t检验的一点理解t分布与t检验的一点理解

      f(t)是t分布的概率密度曲线,这里我不写出f(t)的具体公式了,有兴趣的同学可以自行研究,伟大的统计学家们已经研究透测f(t)了,并且制作了t分布的概率表。从 t 统计量的定义式看就知道,样本个数的影响非常关键,因此 t 分布中有一个重要的概念——自由度,其值为N-1。为什么是N-1呢?我拿样本方差的计算过程来说明吧,样本方差为

                                                                             S^{2}=\sum_{i=1}^{N}(X_{i}-\bar{X})^{2}

N个样本均值确定时,如果知道了其中的任意N-1个样本的值,那么剩下的一个样本的值自然就确定了,这就是为什么自由度为N-1。这里还是在贴一次t分布的概率表吧。

                                    t分布与t检验的一点理解t分布与t检验的一点理解

4. t 检验

       现在我们再回到一开始的“比较麦子种植工艺A和B的优劣比较”问题,   William Sealy Gosset提出的问题是:这20的差值是否在工艺A下麦子平均产量的正常波动范围内?这实际上是一个双样本的 t 检验问题,不过可以将其转化为单样本的 t 检验问题,认为工艺B下麦子的均值也为100,即然后看一下这20的差值是否是显著的。现在我们提出如下假设

                                                                     H_{0}:  工艺B与工艺A下大麦产量一致

       上面的例子中没有给出工艺B下麦子产量的标准差,我这里先假设一个,为5\sqrt{5},那么可以按照单样本的 t 统计量定义式计算此时的统计量值

                                                                           \frac{120-100}{5\sqrt{5}/\sqrt{100}}=17.889

       选定\alpha= 95%的置信水平,自由度为99(样本个数为100),查 t 概率分布表得到1.660(自由度99与自由度100接近,我这里就按100算了),这远小于17.889,因此我们有理由拒绝接受原假设,从而认为工艺B提升了麦子的产量。

5. 小结

       对于 t 检验,我还想再说两句,不管是独立样本还是相依样本的 t 检验,目的都是为了判断两类样本在某一变量上的均值差异是否显著,这也是构造 t 检验的作用。

 

转载于:https://www.cnblogs.com/hgz-dm/p/10886155.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/100913.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 过采样和欠采样_欠采样有几种情况

    过采样和欠采样_欠采样有几种情况一、采样定理只要采样频率高于信号最高频率的两倍,就可以从采样信号中恢复出原始信号。二、过采样和欠采样1、采样频率高于信号最高频率的两倍,这种采样被称为过采样。2、采样频率低于信号最高频率的两倍,这种采样被称为欠采样。三、基带信号和频带信号的采样1、对基带信号进行欠采样是无法从采样信号中恢复出原始信号的,因此基带信号的采样都是过采样。 2、对频带信号进行采样可以是…

    2022年10月22日
    0
  • 如何访问他人电脑上的共享文件夹

    如何访问他人电脑上的共享文件夹

    2021年10月9日
    163
  • 图解正向代理和反向代理的区别_nginx配置多个正向代理

    图解正向代理和反向代理的区别_nginx配置多个正向代理套用古龙武侠小说套路来说,代理服务技术是一门很古老的技术,是在互联网早期出现就使用的技术。一般实现代理技术的方式就是在服务器上安装代理服务软件,让其成为一个代理服务器,从而实现代理技术。常用的代理技术分为正向代理、反向代理和透明代理。本文就是针对这三种代理来讲解一些基本原理和具体的适用范围,便于大家更深入理解代理服务技术。一、正向代理(ForwardProxy)&nbs…

    2022年8月30日
    0
  • 国际标准时间哪个时区_北京时间与世界时间的换算

    国际标准时间哪个时区_北京时间与世界时间的换算关于时间格式2016-08-9T10:01:54.123Z20160809100154.123Z处理方法今天遇到了一个奇怪的时间格式如以下格式,下面两种时间格式所表示的时间是同一个时间,这个不难理解//UTC时间,世界标准时间2016-08-9T10:01:54.123Z20160809100154.123Z如图所示,这是一张由网友提供的图片,里面显示的是时间UTC…

    2022年10月22日
    1
  • JavaScript页面后退或关闭

    JavaScript页面后退或关闭后退方法history.go(-1)如果无法后退时,会返回一个undefined,利用这一点来判断是否可以后退,不能后退时执行window.close();if(!history.go(-1)){window.close();}window.close();对于火狐浏览器经常会无法关闭。因为火狐浏览器只能关闭通过JS新建的窗口,即有target=”_blank”属性的标签,或者

    2022年7月25日
    45
  • DatabaseMetaData 接口

    DatabaseMetaData 接口  DatabaseMetaData接口DatabaseMetaData接口作为整体提供有关数据库的综合信息。其中某些方法采用“字符串”自变量作为目录和模式名称。DB2Everyplace忽略这些自变量。此处的某些方法以ResultSet对象的格式返回信息列表。可以使用正常ResultSet方法(如getString和getInt)来从这些Res

    2022年6月19日
    31

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号