t分布与t检验的一点理解

t分布与t检验的一点理解

        最近又遇到了t分布及t检验方面的内容,发现有些地方自己当初没有很明白,就又查了些资料,加深了一下自己的理解,这里也将自己的一些理解记录下来。

1. 理论基础——大数定理与中心极限定理

       在正式介绍t分布前,还是再强调一下数理统计学中的两大基石般的定理:大数定理与中心极限定理,后面会用到。这里我就不以数学公式的方式来说明了,直接说一下两个定理所表达的意思。

  • 大数定理。不管是强大数定理还是弱大数定理,都表达着这样一个意思:当样本数量足够大时,这些样本的均值无限接近总体的期望。  
  • 中心极限定理。不管样本总体服从什么分布,当样本数量足够大时,样本的均值以正态分布的形式围绕总体均值波动。中心极限定理的表达方式可以有多种,我这里只是其中一种。

2. t 统计量

       t 统计量是英国化学家、数学家、统计学家 William Sealy Gosset提出的,当年他在爱尔兰的吉尼斯酒厂(这个酒厂还有个很牛的事儿,它的老板编著了现今著名的《吉尼斯世界纪录》)工作时,酒厂禁止其将研究成果公开发表,以免泄露秘密,迫不得已William Sealy Gosset以笔名“The Student”发表研究成果,t统计量及t分布的命名就是源于改笔名。

      大麦是酿造啤酒的主要原料,因此酒厂就希望大麦产量越高越好,于是就不断改进大麦种植工艺,此时就需要做试验来比较不同工艺下大麦的产量,但是实际条件不允许(或者为了减轻工作负担)大面积种植麦子来比较工艺的优劣,因此试验田种植是比较合适的方式。比如现在有两片试验田(如下图所示),左边的是采用工艺A种植的麦子,右边的是采用工艺B种植的麦子,两边各种100株麦子。下面我要开始编故事啦。。。

                                                      t分布与t检验的一点理解t分布与t检验的一点理解

       现在发现左边麦田中平均每株麦穗上有100粒麦子,右边麦田中平均每株麦穗上有120粒麦子,这说明啥?说明采用工艺B能得到更高的麦子产量对不?咱们外行可能会这么看,但是人家专业的可不轻易这么认为。这是采用小面积的试验田种出的麦子,一个是量少,不足以说明问题(想想咱们的大数定理),另一个是无法保证除工艺区别外其它因素都一样。因此,William Sealy Gosset就想,这20粒麦子的差值能不能说明工艺的优劣问题呢?

       William Sealy Gosset知道,每株麦穗上的平均麦子数是有波动的,可能这一次种的麦子平均值是100,下一次就不一定了,可能就是105,也可能是95。那可以这样考虑啊,这20的差值是不是在工艺A下麦子平均产量的正常波动范围内?样本均值的波动可以用样本均值的标准差表示,注意:这里说的是样本均值的标准差,而不是样本的标准差,基于这种想法可以构造这样一个统计量

                                                                                             \frac{\bar{u}_{A}-\bar{u}_{B}}{S_{\bar{u}_{A}}}

       来评估工艺的优劣,其中\bar{u}_{A}是工艺A下每株麦穗上结的麦子数,\bar{u}_{B}是工艺B下每株麦穗上结的麦子数,s_{\bar{u}_{A}}是工艺A下每株麦穗上结的麦子数平均值的标准差。好了,到了这里故事也编得差不多了,t 统计量的由来也差不多就这样了,下面咱们严谨的定义一下 t 统计量,分两种情况,一种是单总体情况,另一种是双总体情况。

  • 单总体情况。这种情况下 t 统计量的定义为

                                                                                        t=\frac{\bar{X}-u_{0}}{\sigma /\sqrt{N}}

       式中\bar{X}为样本的均值,u_{0}为总体的均值,\sigma为总体标准差,N为样本个数,由于总体标准差无法得知,因此一般用样本标准差S来估计总体标准差。从数学上可以证明,若样本个数为N,样本均值的标准差(样本均值的波动)等于总体的标准差(总体波动)除以样本个数N,我们可以通过大数定理来简单理解一下,当样本个数增大时,样本均值的波动也应该是越小的。总体的标准差是无法获知的,一般用样本标准差来估计。这里着重强调一个概念——标准误,标准误即样本均值的标准差,它对于理解假设检验很重要。

  • 双总体的情况。这种情况下t 统计量的定义为

                                                                                    t=\frac{\bar{X_{1}}-\bar{X_{2}}}{S_{ \bar{X_{1}}-\bar{X_{2}} } }

       式中\bar{X_{1}}为样本1的均值,\bar{X_{2}}为样本2的均值,S_{ \bar{X_{1}}-\bar{X_{2}} }为样本1与样本2均值差值的标准误。这里我不再说明S_{ \bar{X_{1}}-\bar{X_{2}} }是怎么计算的了,一个原因是比较复杂,需要分几种情况讨论,另一个更主要的原因是S_{ \bar{X_{1}}-\bar{X_{2}} }如何计算不重要,计算机内置函数会帮我们计算的,重要的是理解 t 统计量是如何提出的以及表示什么意思。

3. t 分布与正态分布

        t 统计量的分布就是 t 分布了,下面我们以单总体时的 t 统计量为例,说明一下 t 分布与正态分布的关系。我们已经知道了样本的均值为\bar{X},也知道\bar{X}的标准差为S/\sqrt{N},那么依据中心极限定理,样本均值\bar{X}服从均值为u_{0},方差为S^{2}/N的正态分布,也许你已经发现了,没错,当样本数量足够大时,t 分布无限接近标准的正态分布N(0,1)

        在第一节中也强调了,不管是大数定理还是中心极限定理,都是在样本数量足够大时管用的。在样本数量不是足够大时,尽管t 分布的概率密度曲线和正态分布N(0,1)分布曲线相近,但是还是有所区别,用样本标准差估计总体标准差是一个原因。

                                                t分布与t检验的一点理解t分布与t检验的一点理解

      f(t)是t分布的概率密度曲线,这里我不写出f(t)的具体公式了,有兴趣的同学可以自行研究,伟大的统计学家们已经研究透测f(t)了,并且制作了t分布的概率表。从 t 统计量的定义式看就知道,样本个数的影响非常关键,因此 t 分布中有一个重要的概念——自由度,其值为N-1。为什么是N-1呢?我拿样本方差的计算过程来说明吧,样本方差为

                                                                             S^{2}=\sum_{i=1}^{N}(X_{i}-\bar{X})^{2}

N个样本均值确定时,如果知道了其中的任意N-1个样本的值,那么剩下的一个样本的值自然就确定了,这就是为什么自由度为N-1。这里还是在贴一次t分布的概率表吧。

                                    t分布与t检验的一点理解t分布与t检验的一点理解

4. t 检验

       现在我们再回到一开始的“比较麦子种植工艺A和B的优劣比较”问题,   William Sealy Gosset提出的问题是:这20的差值是否在工艺A下麦子平均产量的正常波动范围内?这实际上是一个双样本的 t 检验问题,不过可以将其转化为单样本的 t 检验问题,认为工艺B下麦子的均值也为100,即然后看一下这20的差值是否是显著的。现在我们提出如下假设

                                                                     H_{0}:  工艺B与工艺A下大麦产量一致

       上面的例子中没有给出工艺B下麦子产量的标准差,我这里先假设一个,为5\sqrt{5},那么可以按照单样本的 t 统计量定义式计算此时的统计量值

                                                                           \frac{120-100}{5\sqrt{5}/\sqrt{100}}=17.889

       选定\alpha= 95%的置信水平,自由度为99(样本个数为100),查 t 概率分布表得到1.660(自由度99与自由度100接近,我这里就按100算了),这远小于17.889,因此我们有理由拒绝接受原假设,从而认为工艺B提升了麦子的产量。

5. 小结

       对于 t 检验,我还想再说两句,不管是独立样本还是相依样本的 t 检验,目的都是为了判断两类样本在某一变量上的均值差异是否显著,这也是构造 t 检验的作用。

 

转载于:https://www.cnblogs.com/hgz-dm/p/10886155.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/100913.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • soot基础 — 解析java文件

    soot基础 — 解析java文件问题 soot 如何接受 java 文件 并且将其解析出来 1 首先我构建了一个测试类 publicclassT publicstatic String args C 1 publicstatic System out println insideA publics

    2025年7月15日
    4
  • auto.js微信自动回复脚本_微信群助手机器人

    auto.js微信自动回复脚本_微信群助手机器人一、前言整体思路1)找到头像右上角有消息标志的聊天(注意直接跑下面代码的时候请确保聊天界面由此前提)2)点击进入聊天窗口,找到所有消息3)取最后一个消息(最新消息)4)和之前的新消息对比是否发生变化5)新消息推送至API6)收到API消息发送微信v8版本发送消息时,不再显示“发送”按钮了,也就没办法用找到“发送”控件的方法实现发送消息了。尝试用KeyCode(code)方式,发送回车键,发现也无效,原因查了一下好像是需要ROOT还是安卓9以上此方法失效。于是用坐标点击的方式点击键盘上的

    2022年9月30日
    2
  • python解释器找不到_python解释器路径

    python解释器找不到_python解释器路径Pycharm“nothingtoshow”ininterpreters(解决Pycharm无法找到编译器的问题)问题描述解决方案问题原因解决过程问题描述暑假放假两周,两周没写代码,打开PyCharm发现编译器找不到了(PythonInterpreterNothingtoshow),程序自然也无法运行,如图:解决方案解决方案来自StackOverflow,原出处:link.(https://stackoverflow.com/questions/67297284/pycharm

    2022年8月26日
    5
  • string或binary数据将被截断_字符串截断错误

    string或binary数据将被截断_字符串截断错误Hibernate:insertintodis_txtfile(delivery,postationid,sn,id)values(?,?,?,?)2012-02-2111:28:53,481[main]WARN org.hibernate.util.JDBCExceptionReporter-SQLError:0,SQLState:220012

    2022年10月7日
    5
  • Js生成二维码_js在线生成二维码

    Js生成二维码_js在线生成二维码1引入jsjquery.jqprint-0.3.jsjquery.qrcode.min.jsjquery-migrate-1.4.1.js2html元素:二维码生成在img的div中,新增img标签,并设置为display:none3生成二维码$(“#ewm”).qrcode(“http://127.0.0.1:8080/pages/check/infos.h…

    2022年10月17日
    1
  • MANIFEST.MF文件(PDB文件)

    打开Java的JAR文件我们经常可以看到文件中包含着一个META-INF目录, 这个目录下会有一些文件,其中必有一个MANIFEST.MF,这个文件描述了该Jar文件的很多信息,下面将详细介绍MANIFEST.MF文件的内 容,先来看struts.jar中包含的MANIFEST.MF文件内容:Manifest-Version:1.0Created-By:ApacheAnt 1.5.1…

    2022年4月15日
    43

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号