POJ 1502 MPI Maelstrom「建议收藏」

POJ 1502 MPI Maelstrom「建议收藏」POJ 1502 MPI Maelstrom

大家好,又见面了,我是你们的朋友全栈君。

MPI Maelstrom
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3896   Accepted: 2330

Description

BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distributed shared memory machine with a hierarchical communication subsystem. Valentine McKee’s research advisor, Jack Swigert, has asked her to benchmark the new system. 

“Since the Apollo is a distributed shared memory machine, memory access and communication times are not uniform,” Valentine told Swigert. “Communication is fast between processors that share the same memory subsystem, but it is slower between processors that are not on the same subsystem. Communication between the Apollo and machines in our lab is slower yet.” 

“How is Apollo’s port of the Message Passing Interface (MPI) working out?” Swigert asked. 

“Not so well,” Valentine replied. “To do a broadcast of a message from one processor to all the other n-1 processors, they just do a sequence of n-1 sends. That really serializes things and kills the performance.” 

“Is there anything you can do to fix that?” 

“Yes,” smiled Valentine. “There is. Once the first processor has sent the message to another, those two can then send messages to two other hosts at the same time. Then there will be four hosts that can send, and so on.” 

“Ah, so you can do the broadcast as a binary tree!” 

“Not really a binary tree — there are some particular features of our network that we should exploit. The interface cards we have allow each processor to simultaneously send messages to any number of the other processors connected to it. However, the messages don’t necessarily arrive at the destinations at the same time — there is a communication cost involved. In general, we need to take into account the communication costs for each link in our network topologies and plan accordingly to minimize the total time required to do a broadcast.”

Input

The input will describe the topology of a network connecting n processors. The first line of the input will be n, the number of processors, such that 1 <= n <= 100. 

The rest of the input defines an adjacency matrix, A. The adjacency matrix is square and of size n x n. Each of its entries will be either an integer or the character x. The value of A(i,j) indicates the expense of sending a message directly from node i to node j. A value of x for A(i,j) indicates that a message cannot be sent directly from node i to node j. 

Note that for a node to send a message to itself does not require network communication, so A(i,i) = 0 for 1 <= i <= n. Also, you may assume that the network is undirected (messages can go in either direction with equal overhead), so that A(i,j) = A(j,i). Thus only the entries on the (strictly) lower triangular portion of A will be supplied. 

The input to your program will be the lower triangular section of A. That is, the second line of input will contain one entry, A(2,1). The next line will contain two entries, A(3,1) and A(3,2), and so on.

Output

Your program should output the minimum communication time required to broadcast a message from the first processor to all the other processors.

Sample Input

5
50
30 5
100 20 50
10 x x 10

Sample Output

35

Source

 

Floyd:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>

using namespace std;

const int N=110;
const int INF=0x3f3f3f3f;

int map[N][N],dis[N],vis[N];
int n;

int main(){

    //freopen("input.txt","r",stdin);

    char str[20];
    while(~scanf("%d",&n)){
        int i,j,k;
        for(i=1;i<=n;i++)
            for(j=1;j<=n;j++)
                map[i][j]=(i==j?0:INF);
        for(i=2;i<=n;i++)
            for(j=1;j<i;j++){
                scanf("%s",str);
                if(str[0]=='x')
                    map[i][j]=map[j][i]=INF;
                else
                    map[i][j]=map[j][i]=atoi(str);
            }
        for(k=1;k<=n;k++)
            for(i=1;i<=n;i++)
                for(j=1;j<=n;j++)
                    if(map[i][j]>map[i][k]+map[k][j])
                        map[i][j]=map[i][k]+map[k][j];
        int ans=-INF;
        for(int i=2;i<=n;i++)
            if(ans<map[1][i])
                ans=map[1][i];
        printf("%d\n",ans);
    }
    return 0;
}

 

 

Dijkstra:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>

using namespace std;

const int N=110;
const int INF=0x3f3f3f3f;

int map[N][N],dis[N],vis[N];
int n;

void Dijkstra(int src){
    int i;
    for(i=1;i<=n;i++){
        dis[i]=map[src][i];
        vis[i]=0;
    }
    dis[src]=0;
    vis[src]=1;
    int j,k,tmp;
    for(i=1;i<n;i++){
        tmp=INF;
        for(j=1;j<=n;j++)
            if(!vis[j] && tmp>dis[j]){
                tmp=dis[j];
                k=j;
            }
        if(tmp==INF)
            break;
        vis[k]=1;
        for(j=1;j<=n;j++)
            if(!vis[j] && dis[j]>dis[k]+map[k][j])
                dis[j]=dis[k]+map[k][j];
    }
}

int main(){

    //freopen("input.txt","r",stdin);

    char str[20];
    while(~scanf("%d",&n)){
        int i,j;
        for(i=1;i<=n;i++)
            for(j=1;j<=n;j++)
                map[i][j]=(i==j?0:INF);
        for(i=2;i<=n;i++)
            for(j=1;j<i;j++){
                scanf("%s",str);
                if(str[0]!='x')
                    map[i][j]=map[j][i]=atoi(str);
            }
        Dijkstra(1);
        int ans=-INF;
        for(i=2;i<=n;i++)
            if(ans<dis[i])
                ans=dis[i];
        printf("%d\n",ans);
    }
    return 0;
}

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/107094.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • TCP拥塞控制算法(Tahoe/Reno/Newreno)

    TCP拥塞控制算法(Tahoe/Reno/Newreno)TCP拥塞控制算法(Tahoe/Reno/Newreno)前言TCP(TransmissionControlProtocol),传输控制协议,是目前__Internet__上最重要的一个通信协议之一,其作用是对数据的传输进行一定的控制;而拥塞控制算法又是TCP中最重要的一个算法之一,接下来我们先来了解一下基本概念,再来详细介绍3个协议中的拥塞控制算法以及他们之间的区别。前期知识储备及名词…

    2022年6月24日
    58
  • 一元线性回归方程公式_用普通最小二乘法估计经典线性模型

    一元线性回归方程公式_用普通最小二乘法估计经典线性模型概述别看公式多,其实很简单最小二乘法其实又叫最小平方法,是一种数据拟合的优化技术。实质上是利用最小误差的平方寻求数据的最佳匹配函数,利用最小二乘法可以便捷的求得未知的数据,起到预测的作用,并且是的这些预测的数据与实际数据之间的误差平方和达到最小。一般应用在曲线拟合的目的上。原理本篇文章不考虑其他方面的应用,我们用最简单的实例说明最小二乘法的工作原理与其内在含义。当我们在研究两个…

    2025年6月1日
    2
  • CountDownLatch、CyclicBarrier、Semaphore、Exchanger

    CountDownLatch、CyclicBarrier、Semaphore、Exchanger

    2021年9月17日
    53
  • pytorch之DataLoader

    pytorch之DataLoaderpytorch之DataLoader在训练神经网络时,最好是对一个batch的数据进行操作,同时还需要对数据进行shuffle和并行加速等。对此,PyTorch提供了DataLoader帮助实现这些功能。Dataset只负责数据的抽象,一次调用__getitem__只返回一个样本。DataLoader的函数定义如下:DataLoader(dataset,batch_size=1,shu…

    2022年5月6日
    50
  • navicat premium激活码【2021最新】

    (navicat premium激活码)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

    2022年3月26日
    233
  • 软件测试之因果图[通俗易懂]

    软件测试之因果图[通俗易懂]1.某软件规格说明书包含这样的要求:第一列字符必须是A或B,第二列字符必须是一个数字,在此情况下进行文件的修改,但如果第一列字符不正确,则给出信息L;如果第二列字符不是数字,则给出信息M。

    2022年8月14日
    5

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号