图的基本算法(BFS和DFS)(转载)

图的基本算法(BFS和DFS)(转载)

大家好,又见面了,我是全栈君。

图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系。对象由顶点(V)表示,而对象之间的关系或者关联则通过图的边(E)来表示。 图可以分为有向图和无向图,一般用G=(V,E)来表示图。经常用邻接矩阵或者邻接表来描述一副图。 在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为广度优先搜索(BFS)和深度优先搜索(DFS)。


广度优先搜索(BFS) 广度优先搜索在进一步遍历图中顶点之前,先访问当前顶点的所有邻接结点。 a .首先选择一个顶点作为起始结点,并将其染成灰色,其余结点为白色。 b. 将起始结点放入队列中。 c. 从队列首部选出一个顶点,并找出所有与之邻接的结点,将找到的邻接结点放入队列尾部,将已访问过结点涂成黑色,没访问过的结点是白色。如果顶点的颜色是灰色,表示已经发现并且放入了队列,如果顶点的颜色是白色,表示还没有发现 d. 按照同样的方法处理队列中的下一个结点。 基本就是出队的顶点变成黑色,在队列里的是灰色,还没入队的是白色。 用一副图来表达这个流程如下:

图的基本算法(BFS和DFS)(转载)

1.初始状态,从顶点1开始,队列={1}

图的基本算法(BFS和DFS)(转载)

2.访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}

图的基本算法(BFS和DFS)(转载)

3.访问2的邻接结点,2出队,4入队,队列={3,4}

图的基本算法(BFS和DFS)(转载)

4.访问3的邻接结点,3出队,队列={4}

图的基本算法(BFS和DFS)(转载)

5.访问4的邻接结点,4出队,队列={ 空}

从顶点1开始进行广度优先搜索:

  1. 初始状态,从顶点1开始,队列={1}
  2. 访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
  3. 访问2的邻接结点,2出队,4入队,队列={3,4}
  4. 访问3的邻接结点,3出队,队列={4}
  5. 访问4的邻接结点,4出队,队列={ 空} 结点5对于1来说不可达。 上面的图可以通过如下邻接矩阵表示:
    1 int maze[5][5] = {
    2     { 0, 1, 1, 0, 0 },
    3     { 0, 0, 1, 1, 0 },
    4     { 0, 1, 1, 1, 0 },
    5     { 1, 0, 0, 0, 0 },
    6     { 0, 0, 1, 1, 0 }
    7 };

    BFS核心代码如下:

     1 #include <iostream>
     2 #include <queue>
     3 #define N 5
     4 using namespace std;
     5 int maze[N][N] = {
     6     { 0, 1, 1, 0, 0 },
     7     { 0, 0, 1, 1, 0 },
     8     { 0, 1, 1, 1, 0 },
     9     { 1, 0, 0, 0, 0 },
    10     { 0, 0, 1, 1, 0 }
    11 };
    12 int visited[N + 1] = { 0, };
    13 void BFS(int start)
    14 {
    15     queue<int> Q;
    16     Q.push(start);
    17     visited[start] = 1;
    18     while (!Q.empty())
    19     {
    20         int front = Q.front();
    21         cout << front << " ";
    22         Q.pop();
    23         for (int i = 1; i <= N; i++)
    24         {
    25             if (!visited[i] && maze[front - 1][i - 1] == 1)
    26             {
    27                 visited[i] = 1;
    28                 Q.push(i);
    29             }
    30         }
    31     }
    32 }
    33 int main()
    34 {
    35     for (int i = 1; i <= N; i++)
    36     {
    37         if (visited[i] == 1)
    38             continue;
    39         BFS(i);
    40     }
    41     return 0;
    42 }

    深度优先搜索(DFS) 深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点。 初始条件下所有节点为白色,选择一个作为起始顶点,按照如下步骤遍历: a. 选择起始顶点涂成灰色,表示还未访问 b. 从该顶点的邻接顶点中选择一个,继续这个过程(即再寻找邻接结点的邻接结点),一直深入下去,直到一个顶点没有邻接结点了,涂黑它,表示访问过了 c. 回溯到这个涂黑顶点的上一层顶点,再找这个上一层顶点的其余邻接结点,继续如上操作,如果所有邻接结点往下都访问过了,就把自己涂黑,再回溯到更上一层。 d. 上一层继续做如上操作,知道所有顶点都访问过。 用图可以更清楚的表达这个过程:

    图的基本算法(BFS和DFS)(转载)

    1.初始状态,从顶点1开始

    图的基本算法(BFS和DFS)(转载)

    2.依次访问过顶点1,2,3后,终止于顶点3

    图的基本算法(BFS和DFS)(转载)

    3.从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5

    图的基本算法(BFS和DFS)(转载)

    4.从顶点5回溯到顶点2,并且终止于顶点2

    图的基本算法(BFS和DFS)(转载)

    5.从顶点2回溯到顶点1,并终止于顶点1

    图的基本算法(BFS和DFS)(转载)

    6.从顶点4开始访问,并终止于顶点4

    从顶点1开始做深度搜索:

    1. 初始状态,从顶点1开始
    2. 依次访问过顶点1,2,3后,终止于顶点3
    3. 从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5
    4. 从顶点5回溯到顶点2,并且终止于顶点2
    5. 从顶点2回溯到顶点1,并终止于顶点1
    6. 从顶点4开始访问,并终止于顶点4

      上面的图可以通过如下邻接矩阵表示:

      1 int maze[5][5] = {
      2     { 0, 1, 1, 0, 0 },
      3     { 0, 0, 1, 0, 1 },
      4     { 0, 0, 1, 0, 0 },
      5     { 1, 1, 0, 0, 1 },
      6     { 0, 0, 1, 0, 0 }
      7 };

      DFS核心代码如下(递归实现):

       1 #include <iostream>
       2 #define N 5
       3 using namespace std;
       4 int maze[N][N] = {
       5     { 0, 1, 1, 0, 0 },
       6     { 0, 0, 1, 0, 1 },
       7     { 0, 0, 1, 0, 0 },
       8     { 1, 1, 0, 0, 1 },
       9     { 0, 0, 1, 0, 0 }
      10 };
      11 int visited[N + 1] = { 0, };
      12 void DFS(int start)
      13 {
      14     visited[start] = 1;
      15     for (int i = 1; i <= N; i++)
      16     {
      17         if (!visited[i] && maze[start - 1][i - 1] == 1)
      18             DFS(i);
      19     }
      20     cout << start << " ";
      21 }
      22 int main()
      23 {
      24     for (int i = 1; i <= N; i++)
      25     {
      26         if (visited[i] == 1)
      27             continue;
      28         DFS(i);
      29     }
      30     return 0;
      31 }

      非递归实现如下,借助一个栈:

       1 #include <iostream>
       2 #include <stack>
       3 #define N 5
       4 using namespace std;
       5 int maze[N][N] = {
       6     { 0, 1, 1, 0, 0 },
       7     { 0, 0, 1, 0, 1 },
       8     { 0, 0, 1, 0, 0 },
       9     { 1, 1, 0, 0, 1 },
      10     { 0, 0, 1, 0, 0 }
      11 };
      12 int visited[N + 1] = { 0, };
      13 void DFS(int start)
      14 {
      15     stack<int> s;
      16     s.push(start);
      17     visited[start] = 1;
      18     bool is_push = false;
      19     while (!s.empty())
      20     {
      21         is_push = false;
      22         int v = s.top();
      23         for (int i = 1; i <= N; i++)
      24         {
      25             if (maze[v - 1][i - 1] == 1 && !visited[i])
      26             {
      27                 visited[i] = 1;
      28                 s.push(i);
      29                 is_push = true;
      30                 break;
      31             }
      32         }
      33         if (!is_push)
      34         {
      35             cout << v << " ";
      36             s.pop();
      37         }
      38 
      39     }
      40 }
      41 int main()
      42 {
      43     for (int i = 1; i <= N; i++)
      44     {
      45         if (visited[i] == 1)
      46             continue;
      47         DFS(i);
      48     }
      49     return 0;
      50 }

      有的DFS是先访问读取到的结点,等回溯时就不再输出该结点,也是可以的。算法和我上面的区别就是输出点的时机不同,思想还是一样的。DFS在环监测和拓扑排序中都有不错的应用。

感谢卡巴拉的树提供的文章,本文来自于http://www.jianshu.com/p/70952b51f0c8

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/108578.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • word-embedding_open compound word

    word-embedding_open compound wordWordEmbedding之CBOWCBOW模型结构准备文字数字化构建损失函数基于RNN的方法基于CBOW的方法CBOWCBOW是一个非常优秀的WordEmbedding模型,其原理非常简单,本文章尝试深入模型内部,探索这个模型的性能和表现。模型结构准备再介绍模型的网络结构之前,首先要介绍的是一个向量计算。假定特征为,x=(x0,x1,⋯&amp;amp;amp;amp;amp;ThinSpace;,xn−1…

    2025年9月4日
    3
  • 继电器驱动电路使用笔记「建议收藏」

    继电器驱动电路使用笔记「建议收藏」在参加立创开源社区的暑假d物联网比赛中需要使用mcu控制继电器,我采用的是技新课堂的继电器电路,但是翻车了最后使用里零妖的继电器驱动方案。零妖阿里云插座文档:https://www.yuque.com/lingyao/oshwhub/fp69nm立创暑期训练营文档:https://www.yuque.com/iiyqfa/ssdag4/pwdyeo智能插座的开源工程(包含继电器部分):https://oshwhub.com/7a745fc8/ke-shang-yong-wu-lian-wang-kai

    2022年6月24日
    24
  • 航天金税开票导入导出txt格式

    航天金税开票导入导出txt格式防伪开票文本接口软件接口文件格式说明一、接口文件格式1.文件种类接口文件为纯文本文件,各行尾以回车换行码(ASCII码13和10)或换行码(ASCII10)分隔均可,可用各种文本编辑器编写或通过应用程序生成。2.注释行文件中以两个斜杠(//)置于行首的行为注释行,系统读入文件时忽略注释行和空行。3.分隔符每行中各个项目之间以两个波浪号(“~~”)分隔,行尾各项目均省略时可省略相应的分隔符。4.日期格式日期以四位年份+两位月份+两位日期表示:YYYYMMDD,…

    2022年5月29日
    115
  • MobaXterm简单使用说明

    MobaXterm简单使用说明

    2021年5月13日
    290
  • 进程调度与进程切换_模式切换和进程切换有什么区别

    进程调度与进程切换_模式切换和进程切换有什么区别从今天开始,我们将要开启一个新的系列【闪耀计划】,没错!这是今年上半年的一整个系列计划!本专题目的是通过百天刷题计划,通过题目和知识点串联的方式,完成对计算机操作系统的复习和巩固;同时还配有专门的笔记总结和文档教程哦!想要搞定,搞透计算机操作系统的同学,本专栏将会通过模块化的分类,刷够1000道题,为大家提供点对点的考点相关知识轰炸!值得注意的是,本专栏将会通过教程+课后习题的方式来进行巩固教学,课后习题的题量也是算入总题数的哦!

    2022年10月20日
    2
  • RDN怎么配置环境

    RDN怎么配置环境非root怎么安装linux版本的lua和torchhttps://blog.csdn.net/BRAVE_NO1/article/details/90260800

    2022年6月18日
    29

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号