chart-7

chart-7

大家好,又见面了,我是全栈君。


  1. # -*- coding: utf-8 -*-
  2. """
  3. Created on Tue Feb 21 15:17:51 2017
  4. @author: zzpp220
  5. """
  6. '''合并(merge)-列或者连接(concat)-行数据集'''
  7. from pandas import DataFrame,Series
  8. from numpy import nan as NaN
  9. import pandas as pd
  10. import numpy as np
  11. import json
  12. df1=DataFrame({
    'left':list('bbacaab'),'data1':range(7)})
  13. df2=DataFrame({
    'right':list('abd'),'data2':range(3)})
  14. df12=pd.merge(df1,df2,left_on='left',right_on='right') ##分为内、外连接、像mysql 一样
  15. ##重塑和轴向旋转 stack: change col to row 和unstack:change row to col
  16. '''这个好!!该有的都由了'''
  17. df3=DataFrame(np.arange(6).reshape((2,3)),index=pd.Index(['sd','gz'],name='state'),columns=pd.Index(['one','two','thr'],name='number'))
  18. '''多重索引的Series和DataFrame可以通过stack,unstack相互转哈,默认情况下取的都是最内层的索引'''
  19. ##将列转为行,得到一个Series,索引是一个多重索引
  20. stack_df3=df3.stack()
  21. #对于一个层次化索引的Series ,可以用unstack 重排为DataFrame。
  22. stack_df3.unstack()
  23. '''
  24. df3.stack()
  25. Out[19]:
  26. state  number
  27. sd     one       0
  28.       two       1
  29.       thr       2
  30. gz     one       3
  31.       two       4
  32.       thr       5
  33. dtype: int64
  34. stack_df3.unstack()
  35. Out[22]:
  36. number  one  two  thr
  37. state                
  38. sd        0    1    2
  39. gz        3    4    5
  40. unstack and stack operate on the in-most level-index,also can operate on other level when give other para
  41. '''
  42. stack_df3.unstack('state')==stack_df3.unstack(0)## operate on the out-most level the same as :
  43. ''''stack_df3.unstack() 默认是按最内层也就是’number‘
  44. Out[22]:
  45. number  one  two  thr
  46. state                
  47. sd        0    1    2
  48. gz        3    4    5
  49.                    stack_df3.unstack('state')==stack_df3.unstack(0)
  50.                    Out[25]:
  51.                    state     sd    gz
  52.                    number            
  53.                    one     True  True
  54.                    two     True  True
  55.                    thr     True  True
  56. '''
  57. '''对全部的营养数据做分析'''
  58. db=json.load(open('/media/zzpp220/Data/Linux_Documents/DOWNLOAD/python-DataAnalysis/pydata-book-master/ch07/foods-2011-10-03.json'))
  59. nutrients=DataFrame(db[0]['nutrients'])
  60. '''
  61. nutrients[:10]
  62. Out[36]:
  63.                   description        group units    value
  64. 0                      Protein  Composition     g    25.18
  65. 1            Total lipid (fat)  Composition     g    29.20
  66. 2  Carbohydrate, by difference  Composition     g     3.06
  67. 3                          Ash        Other     g     3.28
  68. 4                       Energy       Energy  kcal   376.00
  69. 5                        Water  Composition     g    39.28
  70. 6                       Energy       Energy    kJ  1573.00
  71. 7         Fiber, total dietary  Composition     g     0.00
  72. 8                  Calcium, Ca     Elements    mg   673.00
  73. 9                     Iron, Fe     Elements    mg     0.64
  74. '''
  75. info_keys=['description','group','id','manufacturer']
  76. info=DataFrame(db,columns=info_keys)##仅仅导入db中的info_keys中的字段,其他的就不导入了; 
  77. info[:5]
  78. '''查看食物类别的分布情况'''
  79. #info.group.value_counts()[:10]#查看group中的分布情况==pd.values_count(info.group)
  80. '''将所有的食物的营养成分整合到一个大表中'''
  81. nutrients=[]
  82. for rec in db:
  83.    fnuts=DataFrame(rec['nutrients'])##将各食物的营养成分整合到一个大表
  84.    fnuts['id']=rec['id']#并且在表中添加一个表示编号的列,用原来的表中的值赋值
  85.    nutrients.append(fnuts)#依次将DataFrame添加到大的list中
  86. nutrients=pd.concat(nutrients,ignore_index=True)##用concat连接起来大表
  87. '''查看表中有多少重复项'''
  88. nutrients.duplicated().sum()
  89. '''丢弃重复项'''
  90. nutrients.drop_duplicates()
  91. '''重命名对象中的列名(因为二者有相同的列,可能会混淆)'''
  92. col_mapping={
    'description':'food','group':'fgroup'}
  93. info=info.rename(columns=col_mapping,copy=False)
  94. '''
  95. info.rename(columns=col_mapping,copy=False)[:3]
  96. Out[50]:
  97.              food                  fgroup    id manufacturer
  98. 0  Cheese, caraway  Dairy and Egg Products  1008            
  99. 1  Cheese, cheddar  Dairy and Egg Products  1009            
  100. 2     Cheese, edam  Dairy and Egg Products  1018
  101. '''
  102. col_mapping={
    'description':'nutrients','group':'nutgroup'}
  103. nutrients=nutrients.rename(columns=col_mapping,copy=False)
  104. '''合并info和nutrients'''
  105. ndata=pd.merge(nutrients,info,on='id',how='outer')
  106. '''根据营养分类,得出锌的中位值'''
  107. result=ndata.groupby(['nutrients','fgroup'])['value'].quantile(0.5)

转载于:https://www.cnblogs.com/zzxx-myblog/p/6481284.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/108645.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 百度分享解决https格式

    百度分享解决https格式现在的百度分享都是不支持https格式的,所以碰到https格式的就会没有效果,想要解决这个问题也很简单,只需要两步:1.https://github.com/hrwhisper/baiduShare在此网址里面下载一个static包,主要要放到项目里的根目录下,我这里用的是Yii框架,是把static包直接放到web下面了2.src=’http://bdimg.share.baidu.com…

    2022年10月8日
    5
  • Eureka集群环境搭建

    Eureka集群环境搭建前言:Eureka已经停止更新了,在新的项目中,不推荐使用,通过对周阳老师视频的学习,本篇文章主要是简单介绍下Eureka,以及如何搭建集群环境的Eureka,让大家对Eureka有个初步的了解。1.什么是EurekaEureka是Netflix开发的,一个基于REST服务的,服务注册与发现的组件,以实现中间层服务器的负载平衡和故障转移。它主要包括两个组件:EurekaServer和EurekaClientEurekaClient:一个Java

    2022年6月1日
    44
  • NLP系列笔记:通俗理解LDA主题模型

    NLP系列笔记:通俗理解LDA主题模型0前言    印象中,最开始听说“LDA”这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印过一次,但不知是因为这篇文档的前序铺垫太长(现在才意识到这些“铺垫”都是深刻理解LDA的基础,但如果没有人帮助初学者提纲挈领、把握主次、理清思路,则很容易陷入LDA的细枝末节之中),还是因为其中的数学推导细节太多,导致一直没有完整看完…

    2022年8月11日
    6
  • 在线写java代码

    在线写java代码前言蓦然回首自己做开发已经十年了,这十年中我获得了很多,技术能力、培训、出国、大公司的经历,还有很多很好的朋友。但再仔细一想,这十年中我至少浪费了五年时间,这五年可以足够让自己成长为一个优秀的程序员,可惜我错过了,我用这五年时间和很多程序员一样在困惑和迷茫中找不到出路!路其实一直都在那里,只是我们看不到而已!以前我一直被公司和技术牵着走,并不是自己在选择技术,而是不自觉地被推到了这个位置上。想想有多少人对于自己将来要从事的职业和技术类型进行过深入思考和比较呢?当我跳出编码后,我开始思考和程序及程序员职

    2022年7月8日
    27
  • scrapyip池(ip route命令)

    目录一、中间件的使用1-1具体方法详解1-1-1process_request-正常请求调用1-1-2process_response-正常返回调用1-1-3process_exception-捕获错误调用二、Proxy相关官方中间件2-1HttpProxyMiddleware2-2RetryMiddleware2-2-1源码分析…

    2022年4月15日
    48
  • 大学生申请软件著作权有什么用_软件著作权 申请

    大学生申请软件著作权有什么用_软件著作权 申请title:在校大学生如何申请软件著作权(超级详细)文章目录title:在校大学生如何申请软件著作权(超级详细)一、前言二、网上申请步骤:(1)打开中国版权保护中心网站(2)点击网站右上方注册/登录按钮(3)进行网上申请登记软件著作权三、材料准备(1)申请表(2)完整文档一份(3)合作开发协议书(4)软件源码(5)身份证复印件以及事业单位法人证书(6)学校公章和事业单位法人证书的获取办法四…

    2022年9月22日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号