Tricks Device (hdu 5294 最短路+最大流)

Tricks Device (hdu 5294 最短路+最大流)

大家好,又见面了,我是全栈君。

Tricks Device

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 124    Accepted Submission(s): 27

Problem Description
Innocent Wu follows Dumb Zhang into a ancient tomb. Innocent Wu’s at the entrance of the tomb while Dumb Zhang’s at the end of it. The tomb is made up of many chambers, the total number is N. And there are M channels connecting the chambers. Innocent Wu wants to catch up Dumb Zhang to find out the answers of some questions, however, it’s Dumb Zhang’s intention to keep Innocent Wu in the dark, to do which he has to stop Innocent Wu from getting him. Only via the original shortest ways from the entrance to the end of the tomb costs the minimum time, and that’s the only chance Innocent Wu can catch Dumb Zhang.

Unfortunately, Dumb Zhang masters the art of becoming invisible(奇门遁甲) and tricks devices of this tomb, he can cut off the connections between chambers by using them. Dumb Zhang wanders how many channels at least he has to cut to stop Innocent Wu. And Innocent Wu wants to know after how many channels at most Dumb Zhang cut off Innocent Wu still has the chance to catch Dumb Zhang.

 

Input
There are multiple test cases. Please process till EOF.

For each case,the first line must includes two integers, N(<=2000), M(<=60000). N is the total number of the chambers, M is the total number of the channels.

In the following M lines, every line must includes three numbers, and use ai、bi、li as channel i connecting chamber ai and bi(1<=ai,bi<=n), it costs li(0<li<=100) minute to pass channel i.

The entrance of the tomb is at the chamber one, the end of tomb is at the chamber N.

 

Output
Output two numbers to stand for the answers of Dumb Zhang and Innocent Wu’s questions.
 

Sample Input
   
   
8 9 1 2 2 2 3 2 2 4 1 3 5 3 4 5 4 5 8 1 1 6 2 6 7 5 7 8 1

 

Sample Output
   
   
2 6

 

Source

Recommend

题意:n个点m条无向边,如果从起点0到终点n-1的最短路距离为dist,求最少删除多少条边使得图中不再存在最短路。最多删除多少条边使得图中仍然存在最短路。

思路:先用spfa求一次最短路,开一个road数组,road[i]表示从起点走到i点最短路径所经过的最少边数,然后第二问就是m-road[n-1];再依据最短路的dist数组推断哪些边是最短路上的,用它们又一次构图。跑一遍网络流求最小割。比赛的时候没有在最短路上建边,直接用的原图。果断TLE,又坑了队友=-=

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b)  for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b)  for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v)   memset ((t) , v, sizeof(t))
#define sf(n)       scanf("%d", &n)
#define sff(a,b)    scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf          printf
#define DBG         pf("Hi\n")
typedef long long ll;
using namespace std;

#define INF 0x3f3f3f3f
#define mod 1000000009
const int MAXN = 2005;
const int MAXM = 200005;
const int N = 1005;

int n,m;

struct EDGE
{
    int u,v,len,next;
}e[MAXM];

struct Edge
{
    int to,next,cap,flow;
}edge[MAXM];

int tol;
int head[MAXN];

void init()
{
    tol=0;
    memset(head,-1,sizeof(head));
}

void add(int u,int v,int len)
{
    e[tol].u=u;
    e[tol].v=v;
    e[tol].len=len;
    e[tol].next=head[u];
    head[u]=tol++;
    e[tol].u=v;
    e[tol].v=u;
    e[tol].len=len;
    e[tol].next=head[v];
    head[v]=tol++;
}

void addedge(int u,int v,int w,int rw=0)
{
    edge[tol].to=v;
    edge[tol].cap=w;
    edge[tol].flow=0;
    edge[tol].next=head[u];
    head[u]=tol++;

    edge[tol].to=u;
    edge[tol].cap=rw;
    edge[tol].flow=0;
    edge[tol].next=head[v];
    head[v]=tol++;
}

int Q[MAXN];
int dep[MAXN],cur[MAXN],sta[MAXN];

bool bfs(int s,int t,int n)
{
    int front=0,tail=0;
    memset(dep,-1,sizeof(dep[0])*(n+1));
    dep[s]=0;
    Q[tail++]=s;
    while (front<tail)
    {
        int u=Q[front++];
        for (int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if (edge[i].cap>edge[i].flow && dep[v]==-1)
            {
                dep[v]=dep[u]+1;
                if (v==t) return true;
                Q[tail++]=v;
            }
        }
    }
    return false;
}

int dinic(int s,int t,int n)
{
    int maxflow=0;
    while (bfs(s,t,n))
    {
        for (int i=0;i<n;i++) cur[i]=head[i];
        int u=s,tail=0;
        while (cur[s]!=-1)
        {
            if (u==t)
            {
                int tp=INF;
                for (int i=tail-1;i>=0;i--)
                    tp=min(tp,edge[sta[i]].cap-edge[sta[i]].flow);
                maxflow+=tp;
                for (int i=tail-1;i>=0;i--)
                {
                    edge[sta[i]].flow+=tp;
                    edge[sta[i]^1].flow-=tp;
                    if (edge[sta[i]].cap-edge[sta[i]].flow==0)
                        tail=i;
                }
                u=edge[sta[tail]^1].to;
            }
            else if (cur[u]!=-1 && edge[cur[u]].cap > edge[cur[u]].flow &&dep[u]+1==dep[edge[cur[u]].to])
            {
                sta[tail++]=cur[u];
                u=edge[cur[u]].to;
            }
            else
            {
                while (u!=s && cur[u]==-1)
                    u=edge[sta[--tail]^1].to;
                cur[u]=edge[cur[u]].next;
            }
        }
    }
    return maxflow;
}

int dist[MAXN];
int vis[MAXN];
int road[MAXN];

void SPFA()
{
    memset(vis,0,sizeof(vis));
    memset(dist,INF,sizeof(dist));
    memset(road,INF,sizeof(road));
    dist[0]=0;
    road[0]=0;
    vis[0]=1;
    queue<int>Q;
    Q.push(0);
    while (!Q.empty())
    {
        int u=Q.front();
        Q.pop();
        vis[u]=0;
        for (int i=head[u];~i;i=e[i].next)
        {
            int v=e[i].v;
            if (dist[v]>dist[u]+e[i].len)
            {
                dist[v]=dist[u]+e[i].len;
                road[v]=road[u]+1;
                if (!vis[v])
                {
                    vis[v]=1;
                    Q.push(v);
                }
            }
            else if (dist[v]==dist[u]+e[i].len)
            {
                if (road[v]>road[u]+1)
                {
                    road[v]=road[u]+1;
                    if (!vis[v])
                    {
                        vis[v]=1;
                        Q.push(v);
                    }
                }
            }
        }
    }
}

int main()
{
#ifndef ONLINE_JUDGE
    freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
    int i,j,u,v,w;
    while (~sff(n,m))
    {
        init();
        for (i=0;i<m;i++)
        {
            sfff(u,v,w);
            if (u==v) continue;
            u--;v--;
            add(u,v,w);
        }
        SPFA();
        int cnt=tol;
        init();
        for (i=0;i<cnt;i++)
        {
            u=e[i].u;
            v=e[i].v;
            if (dist[v]==dist[u]+e[i].len)
                addedge(u,v,1);
        }
        int ans=dinic(0,n-1,n);
        pf("%d %d\n",ans,m-road[n-1]);
    }
    return 0;
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/115451.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 建立git服务器_git部署代码到服务器

    建立git服务器_git部署代码到服务器参考网上资料搭建git服务器过程记录如下:需求硬件需求:一台Ubuntu或者debian电脑(虚拟机),能通过网络访问到。软件需求:git-core,gitosis,openssh-server,openssh-client安装配置git服务器安装git和openssh:a@server:~$sudoapt-getinstallgit-coreopenssh-servero…

    2022年10月4日
    0
  • 【C语言天天练(二四)】内存分配

    【C语言天天练(二四)】内存分配

    2022年1月21日
    79
  • jsonobject返回map_jsonobject转map对象

    jsonobject返回map_jsonobject转map对象原标题:jsonobject转map对象我们在开发嵌套数据的时候,有时会返回jsonobject数据,这是因为进行的是url访问,但是这个过程可能会出现异常,因此我们需要将jsonobject转map对象使用。本文将向大家介绍jsonobject转map对象的实现方法。1、依赖于jar包,使用json-lib包进行转换。相关jar包jakartacommons-lang2.5jakarta…

    2022年9月28日
    1
  • Z平台-开源免费的JAVA快速开发平台

    Z平台-开源免费的JAVA快速开发平台Z平台是开源免费的JavaWeb快速开发平台。通过Z平台集成开发环境,以零编码、动态配置的方式能够快速开发出各类Web管理系统。Z平台框架组成所用到的各种功能组件与框架,都是开源免费的,不涉及到版权问题,商业与非商业项目都可以使用。

    2022年5月14日
    50
  • RNAseq数据作图_做RNAseq结果不稳定

    RNAseq数据作图_做RNAseq结果不稳定在RNA-seq项目中,常见的结果包括:火山图、韦恩图、聚类热图、log2(ratios)折线图、有向无环图、散点图、代谢通路图、蛋白互作图等。今天我们先来一起学习火山图、韦恩图、聚类热图和折线图的解读。1、火山图RNA-seq中,火山图(VolcanoPlot)显示了两个重要的指标:foldchange和校正后的pvalue,利用T检验分析出两样本间显著差异表达的基因后,以log2(f…

    2022年10月20日
    1
  • linkedin官网_linkedin manager

    linkedin官网_linkedin managerWhy?关系型数据库仍然作为主要的primarydatastore的方案RelationalDatabaseshavebeenaroundforalongtimeandhavebecomeatrustedstoragemediumforallofacompany’sdata.传统的数据仓库的ETL和OLAP方案Datais…

    2022年10月10日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号