Tricks Device (hdu 5294 最短路+最大流)

Tricks Device (hdu 5294 最短路+最大流)

大家好,又见面了,我是全栈君。

Tricks Device

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 124    Accepted Submission(s): 27

Problem Description
Innocent Wu follows Dumb Zhang into a ancient tomb. Innocent Wu’s at the entrance of the tomb while Dumb Zhang’s at the end of it. The tomb is made up of many chambers, the total number is N. And there are M channels connecting the chambers. Innocent Wu wants to catch up Dumb Zhang to find out the answers of some questions, however, it’s Dumb Zhang’s intention to keep Innocent Wu in the dark, to do which he has to stop Innocent Wu from getting him. Only via the original shortest ways from the entrance to the end of the tomb costs the minimum time, and that’s the only chance Innocent Wu can catch Dumb Zhang.

Unfortunately, Dumb Zhang masters the art of becoming invisible(奇门遁甲) and tricks devices of this tomb, he can cut off the connections between chambers by using them. Dumb Zhang wanders how many channels at least he has to cut to stop Innocent Wu. And Innocent Wu wants to know after how many channels at most Dumb Zhang cut off Innocent Wu still has the chance to catch Dumb Zhang.

 

Input
There are multiple test cases. Please process till EOF.

For each case,the first line must includes two integers, N(<=2000), M(<=60000). N is the total number of the chambers, M is the total number of the channels.

In the following M lines, every line must includes three numbers, and use ai、bi、li as channel i connecting chamber ai and bi(1<=ai,bi<=n), it costs li(0<li<=100) minute to pass channel i.

The entrance of the tomb is at the chamber one, the end of tomb is at the chamber N.

 

Output
Output two numbers to stand for the answers of Dumb Zhang and Innocent Wu’s questions.
 

Sample Input
   
   
8 9 1 2 2 2 3 2 2 4 1 3 5 3 4 5 4 5 8 1 1 6 2 6 7 5 7 8 1

 

Sample Output
   
   
2 6

 

Source

Recommend

题意:n个点m条无向边,如果从起点0到终点n-1的最短路距离为dist,求最少删除多少条边使得图中不再存在最短路。最多删除多少条边使得图中仍然存在最短路。

思路:先用spfa求一次最短路,开一个road数组,road[i]表示从起点走到i点最短路径所经过的最少边数,然后第二问就是m-road[n-1];再依据最短路的dist数组推断哪些边是最短路上的,用它们又一次构图。跑一遍网络流求最小割。比赛的时候没有在最短路上建边,直接用的原图。果断TLE,又坑了队友=-=

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b)  for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b)  for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v)   memset ((t) , v, sizeof(t))
#define sf(n)       scanf("%d", &n)
#define sff(a,b)    scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf          printf
#define DBG         pf("Hi\n")
typedef long long ll;
using namespace std;

#define INF 0x3f3f3f3f
#define mod 1000000009
const int MAXN = 2005;
const int MAXM = 200005;
const int N = 1005;

int n,m;

struct EDGE
{
    int u,v,len,next;
}e[MAXM];

struct Edge
{
    int to,next,cap,flow;
}edge[MAXM];

int tol;
int head[MAXN];

void init()
{
    tol=0;
    memset(head,-1,sizeof(head));
}

void add(int u,int v,int len)
{
    e[tol].u=u;
    e[tol].v=v;
    e[tol].len=len;
    e[tol].next=head[u];
    head[u]=tol++;
    e[tol].u=v;
    e[tol].v=u;
    e[tol].len=len;
    e[tol].next=head[v];
    head[v]=tol++;
}

void addedge(int u,int v,int w,int rw=0)
{
    edge[tol].to=v;
    edge[tol].cap=w;
    edge[tol].flow=0;
    edge[tol].next=head[u];
    head[u]=tol++;

    edge[tol].to=u;
    edge[tol].cap=rw;
    edge[tol].flow=0;
    edge[tol].next=head[v];
    head[v]=tol++;
}

int Q[MAXN];
int dep[MAXN],cur[MAXN],sta[MAXN];

bool bfs(int s,int t,int n)
{
    int front=0,tail=0;
    memset(dep,-1,sizeof(dep[0])*(n+1));
    dep[s]=0;
    Q[tail++]=s;
    while (front<tail)
    {
        int u=Q[front++];
        for (int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].to;
            if (edge[i].cap>edge[i].flow && dep[v]==-1)
            {
                dep[v]=dep[u]+1;
                if (v==t) return true;
                Q[tail++]=v;
            }
        }
    }
    return false;
}

int dinic(int s,int t,int n)
{
    int maxflow=0;
    while (bfs(s,t,n))
    {
        for (int i=0;i<n;i++) cur[i]=head[i];
        int u=s,tail=0;
        while (cur[s]!=-1)
        {
            if (u==t)
            {
                int tp=INF;
                for (int i=tail-1;i>=0;i--)
                    tp=min(tp,edge[sta[i]].cap-edge[sta[i]].flow);
                maxflow+=tp;
                for (int i=tail-1;i>=0;i--)
                {
                    edge[sta[i]].flow+=tp;
                    edge[sta[i]^1].flow-=tp;
                    if (edge[sta[i]].cap-edge[sta[i]].flow==0)
                        tail=i;
                }
                u=edge[sta[tail]^1].to;
            }
            else if (cur[u]!=-1 && edge[cur[u]].cap > edge[cur[u]].flow &&dep[u]+1==dep[edge[cur[u]].to])
            {
                sta[tail++]=cur[u];
                u=edge[cur[u]].to;
            }
            else
            {
                while (u!=s && cur[u]==-1)
                    u=edge[sta[--tail]^1].to;
                cur[u]=edge[cur[u]].next;
            }
        }
    }
    return maxflow;
}

int dist[MAXN];
int vis[MAXN];
int road[MAXN];

void SPFA()
{
    memset(vis,0,sizeof(vis));
    memset(dist,INF,sizeof(dist));
    memset(road,INF,sizeof(road));
    dist[0]=0;
    road[0]=0;
    vis[0]=1;
    queue<int>Q;
    Q.push(0);
    while (!Q.empty())
    {
        int u=Q.front();
        Q.pop();
        vis[u]=0;
        for (int i=head[u];~i;i=e[i].next)
        {
            int v=e[i].v;
            if (dist[v]>dist[u]+e[i].len)
            {
                dist[v]=dist[u]+e[i].len;
                road[v]=road[u]+1;
                if (!vis[v])
                {
                    vis[v]=1;
                    Q.push(v);
                }
            }
            else if (dist[v]==dist[u]+e[i].len)
            {
                if (road[v]>road[u]+1)
                {
                    road[v]=road[u]+1;
                    if (!vis[v])
                    {
                        vis[v]=1;
                        Q.push(v);
                    }
                }
            }
        }
    }
}

int main()
{
#ifndef ONLINE_JUDGE
    freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
    int i,j,u,v,w;
    while (~sff(n,m))
    {
        init();
        for (i=0;i<m;i++)
        {
            sfff(u,v,w);
            if (u==v) continue;
            u--;v--;
            add(u,v,w);
        }
        SPFA();
        int cnt=tol;
        init();
        for (i=0;i<cnt;i++)
        {
            u=e[i].u;
            v=e[i].v;
            if (dist[v]==dist[u]+e[i].len)
                addedge(u,v,1);
        }
        int ans=dinic(0,n-1,n);
        pf("%d %d\n",ans,m-road[n-1]);
    }
    return 0;
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/115451.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • python语法学习—打印九九乘法表

    python语法学习—打印九九乘法表用 python 语法打印九九乘法表 这肯定会用到循环 在其他很多编程语言 java c js 等都可以用 for 循环或者 while 循环进行嵌套从而实现乘法表的打印 但是在 python 中不能使用 for 循环 python 中的 for 循环一般是用来遍历 python 中的非数字类型也就序列或者容器 但是 python 中有 range 函数可以返回一个可迭代对象 可以用来计算 同样可以用来实现循

    2025年7月13日
    6
  • word-embedding_open compound word

    word-embedding_open compound wordWordEmbedding之CBOWCBOW模型结构准备文字数字化构建损失函数基于RNN的方法基于CBOW的方法CBOWCBOW是一个非常优秀的WordEmbedding模型,其原理非常简单,本文章尝试深入模型内部,探索这个模型的性能和表现。模型结构准备再介绍模型的网络结构之前,首先要介绍的是一个向量计算。假定特征为,x=(x0,x1,⋯&amp;amp;amp;amp;amp;ThinSpace;,xn−1…

    2025年9月4日
    4
  • API接口重复提交

    API接口重复提交

    2021年11月6日
    42
  • Postman 使用教程

    Postman 使用教程关注「开源Linux」,选择“设为星标”回复「学习」,有我为您特别筛选的学习资料~postman是一款支持http协议的接口调试与测试工具,其主要特点就是功能强大,使用简单且易…

    2022年5月6日
    36
  • 图片介质受写入保护_写入保护

    图片介质受写入保护_写入保护最近使用U盘,突然不能正常使用了,在U盘内新建文件夹,提示“介质受写入保护”无法创建文件,赶紧网上查找解决办法。查找的结果比解释比较全面的就是:方法一:格式化我的电脑(右击)-管理-磁盘管理-选中U盘右键删除后格式化(网上的方法,这招肯定能用,但是适用于没有重要数据的前提下,格式化后之前的数据会全部丢失)方法二:修改注册表1、打开注册表win+R(即开始-运行)键入regedit.exe2、进入如…

    2025年7月16日
    6
  • phpstorm 激活码2021(破解版激活)

    phpstorm 激活码2021(破解版激活),https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月16日
    218

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号