[ACM] POJ 1442 Black Box (堆,优先队列)

[ACM] POJ 1442 Black Box (堆,优先队列)

大家好,又见面了,我是全栈君。

Black Box
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 7099   Accepted: 2888

Description

Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions: 

ADD (x): put element x into Black Box; 

GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending. 

Let us examine a possible sequence of 11 transactions: 

Example 1 

N Transaction i Black Box contents after transaction Answer 

      (elements are arranged by non-descending)   

1 ADD(3)      0 3   

2 GET         1 3                                    3 

3 ADD(1)      1 1, 3   

4 GET         2 1, 3                                 3 

5 ADD(-4)     2 -4, 1, 3   

6 ADD(2)      2 -4, 1, 2, 3   

7 ADD(8)      2 -4, 1, 2, 3, 8   

8 ADD(-1000)  2 -1000, -4, 1, 2, 3, 8   

9 GET         3 -1000, -4, 1, 2, 3, 8                1 

10 GET        4 -1000, -4, 1, 2, 3, 8                2 

11 ADD(2)     4 -1000, -4, 1, 2, 2, 3, 8   

It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type. 

Let us describe the sequence of transactions by two integer arrays: 

1. A(1), A(2), …, A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2). 

2. u(1), u(2), …, u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, … and N-transaction GET. For the Example we have u=(1, 2, 6, 6). 

The Black Box algorithm supposes that natural number sequence u(1), u(2), …, u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), …, A(u(p)) sequence. 

Input

Input contains (in given order): M, N, A(1), A(2), …, A(M), u(1), u(2), …, u(N). All numbers are divided by spaces and (or) carriage return characters.

Output

Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

Sample Input

7 4
3 1 -4 2 8 -1000 2
1 2 6 6

Sample Output

3
3
1
2

Source

7 4 3 1 -4 2 8 -1000 2 1 2 6 6

7代表以下给定7个数的数字序列。4能够理解为四次查询, 1 2 6 6为查讯。第一次查询是求数字序列仅仅有前一个数(3)时。此时的第一小的数字,即1,第二次查询是求数字序列仅仅有前2个数(3 1)时。此时的第二小的数字,即 3,第三次查询是求数字序列仅仅有前6个数时(3,1,-4,2,8,-1000)。此时的第三小的数字,即1,第四次查询是求数字序列仅仅有前6个数时。此时的第四小的数字。

思路为: 当求第4小的数字时,我们用一个大顶堆来维护前三个最小的数字,那么小顶堆的堆顶即为所求。

用priority_queue<int>big;  优先队列还起到大顶堆的作用,顶部即为最大值  ,即 big.top();
    priority_queue<int,vector<int>,greater<int> >small;   小顶堆。顶堆为最小值 。即 small.top();

用例子来说明一下 大顶堆和小顶堆工作方法:

1 2 6 6

首先是1:  把第一个数3 插入到小顶堆中,这时候推断。假设大顶堆不为空且小顶堆的top小于大顶堆的top时,就把二者的top值互换,由于,大顶堆中的数不能比小顶堆中的大。大顶堆维护第i次查询时,前i-1个最小的数,这时候大顶堆为空,不用互换值。 输出第一次查询时前1个数的第1小的数即为 小顶堆的top 3,然后把小顶堆的top 移除。放到大顶堆中。

然后是2: 把第二个数1插入到小顶堆中。推断,大顶堆不为空,小顶.top() 1 <大顶.top() 3 ,所以二者互换,小顶.top()为3,大顶top()为1。 然后输出小顶.top(),即为第二小的数。把小顶的.top()移除,放入大顶中。这是大顶中维护的是眼下数字中前两个最小的数。

然后是6: 要求前6个数中第3小的数字,先得把3 1以后的四个数字插入才可以六个数。依次插入,  -4插入小顶堆。这时 大顶堆 3 1,-4<3,互换,  小顶堆 3,大顶堆为1 -4 ,2插入小顶堆,小顶堆 2,3  大顶堆 1 -4,  2>1,不用互换,  8插入到小顶堆。小顶堆为  2,3,8  大顶堆为 1。-4。  2>1,不用互换,-1000插入到小顶堆。小顶堆 -1000,2,3,8,大顶堆1,-4, -1000<1,不行,互换以后得小顶堆。1,2,3,8 , 大顶堆 -1000。-4 ,输出小顶堆.top() 1。 并把它移除放入到大顶堆中。为下次查询做准备。

所以从以上能够看出,关键点就是第i次查询时,大顶堆中维护的总是眼下数字中最小的 i-1个数。

代码:

#include <iostream>
#include <stdio.h>
#include <queue>
#include <algorithm>
using namespace std;
const int maxn=30010;
int num[maxn];
int n,m;

int main()
{
    priority_queue<int>big;
    priority_queue<int,vector<int>,greater<int> >small;
    int m,n;
    scanf("%d%d",&m,&n);
    for(int i=1;i<=m;i++)
        scanf("%d",&num[i]);
    int cnt=1;
    int op;
    for(int i=1;i<=n;i++)
    {
        cin>>op;
        while(cnt<=op)
        {
            small.push(num[cnt]);
            if(!big.empty()&&small.top()<big.top())//小顶堆里面的数不能比大顶堆里面的数小
            {
                int n1=big.top();
                int n2=small.top();
                big.pop();
                small.pop();
                big.push(n2);
                small.push(n1);
            }
            cnt++;
        }
        printf("%d\n",small.top());
        big.push(small.top());//这句话非常关键。保证了在求第k个最小数时。大顶堆里面保存的是前k-1个最小数
        small.pop();
    }
    return 0;
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/115721.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • java程序设计图书管理系统源码(java图书管理系统设计报告)

    图书管理系统需实现的功能如下:(1)用户管理:包括用户的注册于登录。(2)图书管理:包括录入、查询、修改和删除图书信息。(3)借书:包括借阅图书和查看借书记录。(4)还书:包括还书和查看还书记录。(5)为了保证系统安全,进入系统时,对用户登录的密码进行加密与解密。源码、课程设计报告、数据库表图的百度网盘链接:https://pan.baidu.com/s…

    2022年4月12日
    84
  • goland 2021.3激活 3月最新注册码

    goland 2021.3激活 3月最新注册码,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月14日
    45
  • 罗马字符转整数(python)

    罗马字符转整数(python)力扣:罗马字符转整数(python实现)难度:简单

    2022年9月28日
    1
  • Vue(9)购物车练习

    Vue(9)购物车练习购物车案例经过一系列的学习,我们这里来练习一个购物车的案例**需求:**使用vue写一个表单页面,页面上有购买的数量,点击按钮+或者-,可以增加或减少购物车的数量,数量最少不得少于0,点击移除按钮

    2022年8月7日
    4
  • 流量分析基础篇

    流量分析基础篇流量分析1.流量分析是什么?  网络流量分析是指捕捉网络中流动的数据包,并通过查看包内部数据以及进行相关的协议、流量分析、统计等来发现网络运行过程中出现的问题。  CTF比赛中,通常比赛中会提供一个包含流量数据的PCAP文件,进行分析。2.数据包分析总体把握–协议分级–端点统计过滤赛选–过滤…

    2022年6月1日
    42
  • poe交换机是干什么用的_poe交换机

    poe交换机是干什么用的_poe交换机供电用的交换机,比如安装网络监控时不方便给摄像头拉电线,就可以使用PoE交换机供电,还有弄无线网络时也可以给AP供电,主要方便,关于怎么使用,如果那些需要供电的设备支持PoE直接连接就行了。那么,什么叫POE交换机?POE交换机怎么使用呢?接下来我们就跟随飞畅科技的小编一起来详细了解下吧!交换机操作步骤:第一步:将ADSL猫的网线连接到以太网交换机任意一个口;第二步:设置笔记本的其中一台,IP(也可以是其他的),然后设置子网掩码,默认即可,其他信息一概不填;第三步:用系统自带的宽带连接建立好

    2022年9月1日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号