母函数[通俗易懂]

母函数

大家好,又见面了,我是全栈君。

在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数。其每一项的系数能够提供关于这个序列的信息。使用母函数解决这个问题的方法称为母函数方法

我们首先来看下这个多项式乘法:

母函数[通俗易懂]

由此能够看出:

1.x的系数是a1,a2,…an 的单个组合的全体。

2. x^2的系数是a1,a2,…a2的两个组合的全体。

………

n. x^n的系数是a1,a2,….an的n个组合的全体(仅仅有1个)。

令a1,a2…an都等于1,由此可得

母函数[通俗易懂]

这里先给出两句话。不懂的能够等看完这篇文章再回过头来看:

1.“把组合问题的加法法则和幂级数的乘幂相应起来”

2.“母函数的思想非常easy — 就是把离散数列和幂级数一 一相应起来,把离散数列间的相互结合关系相应成为幂级数间的运算关系。最后由幂级数形式来确定离散数列的构造. ”

母函数的定义

对于序列a0。a1,a2,…构造一函数:

母函数[通俗易懂]

第一种:

有1克、2克、3克、4克的砝码各一枚,能称出哪几种重量?每种重量各有几种可能方案?

考虑用母函数来解决问题:

我们如果x表示砝码。x的指数表示砝码的重量。这样:

1个1克的砝码能够用函数1+1*x^1表示,

1个2克的砝码能够用函数1+1*x^2表示。

1个3克的砝码能够用函数1+1*x^3表示,

1个4克的砝码能够用函数1+1*x^4表示。

上面这四个式子懂吗?

我们拿1+x^2来说,前面已经说过,x表示砝码,x的指数表示砝码的重量!初始状态时,这里就是一个质量为2的砝码。

那么前面的1表示什么?依照上面的理解,1事实上应该写为:1*x^0,即1代表重量为2的砝码没有取。

所以这里1+1*x^2 = 1*x^0 + 1*x^2,即表示2克的砝码有两种状态。不取或取,不取则为1*x^0。取则为1*x^2

 

接着讨论上面的1+x^2。这里x前面的系数有什么意义?

这里的系数表示状态数(方案数)

1+x^2。也就是1*x^0 + 1*x^2,也就是上面说的不取2克砝码。此时有1种状态;或者取2克砝码,此时也有1种状态。(分析!)

所以,前面说的那句话的意义大家能够理解了吧?

几种砝码的组合能够称重的情况,能够用以上几个函数的乘积表示:

(1+x)(1+x^2)(1+x^3)(1+x^4)

=(1+x+x^2+x^4)(1+x^3+^4+x^7)

=1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + x^9 + x^10

从上面的函数知道:可称出从1克到10克,系数便是方案数。(!

。!经典!!。)

比如右端有2^x^5 项,即称出5克的方案有2种:5=3+2=4+1。相同。6=1+2+3=4+2;10=1+2+3+4。

故称出6克的方案数有2种。称出10克的方案数有1种 。


接着上面,接下来是另外一种情况: 

另外一种:

求用1分、2分、3分的邮票贴出不同数值的方案数:

大家把这样的情况和第一种比較有何差别?第一种每种是一个,而这里每种是无限的。

母函数[通俗易懂]

以展开后的x^4为例。其系数为4。即4拆分成1、2、3之和的拆分方案数为4;

即 :4=1+1+1+1=1+1+2=1+3=2+2 

这里再引出两个概念”整数拆分“和”拆分数“:

所谓整数拆分即把整数分解成若干整数的和(相当于把n个无差别的球放到n个无标志的盒子。盒子同意空。也同意放多于一个球)。

整数拆分成若干整数的和,办法不一,不同拆分法的总数叫做拆分数

代码模板:

#include <iostream>  
using namespace std;  
const int _max = 10001;   
// c1是保存各项质量砝码能够组合的数目  
// c2是中间量。保存没一次的情况  
int c1[_max], c2[_max];     
int main()  
{      
    int nNum;     
    int i, j, k;  
   
    while(cin >> nNum)  
    {  
        for(i=0; i<=nNum; ++i)   // ---- ①  
        {  
            c1[i] = 1;  
            c2[i] = 0;  
        }  
        for(i=2; i<=nNum; ++i)   // ----- ②  
        {  
   
            for(j=0; j<=nNum; ++j)   // ----- ③  
                for(k=0; k+j<=nNum; k+=i)  // ---- ④  
                {  
                    c2[j+k] += c1[j];  
                }  
            for(j=0; j<=nNum; ++j)     // ---- ⑤  
            {  
                c1[j] = c2[j];  
                c2[j] = 0;  
            }  
        }  
        cout << c1[nNum] << endl;  
    }  
    return 0;  
} 

我们来解释下上面标志的各个地方:(***********!!

!重点!

!!***********)

①  、首先对c1初始化,由第一个表达式(1+x+x^2+..x^n)初始化,把质量从0到n的全部砝码都初始化为1.

②  、 i从2到n遍历。这里i就是指第i个表达式。上面给出的另外一种母函数关系式里。每个括号括起来的就是一个表达式。

③、j 从0到n遍历,这里j就是(前面i個表达式累乘的表达式)里第j个变量,(这里感谢一下seagg朋友给我指出的错误。大家能够看下留言处的讨论)。如(1+x)(1+x^2)(1+x^3),j先指示的是1和x的系数,i=2运行完之后变为

(1+x+x^2+x^3)(1+x^3)。这时候j应该指示的是合并后的第一个括号的四个变量的系数。

④ 、 k表示的是第j个指数,所以k每次增i(由于第i个表达式的增量是i)。

⑤  、把c2的值赋给c1,而把c2初始化为0。由于c2每次是从一个表达式中開始的。


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/115889.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Python注释

    Python注释单行注释python中单行注释采用#开头[cclang='python']print‘hellopython’#thisisacomment[/cc]多行注释然后pyt

    2022年7月5日
    21
  • mybatis-generator 的坑我都走了一遍_import java.util.Scanner

    mybatis-generator 的坑我都走了一遍_import java.util.Scanner环境​ 使用springboot2,jdk1.8,idea在pom引入相关依赖<!–mybatise-generator–><plugin><groupId

    2022年8月16日
    3
  • mmc卡和sd卡区别「建议收藏」

    mmc卡和sd卡区别「建议收藏」转载:https://zhidao.baidu.com/question/296690750.html区别:1、尺寸不同:SD卡的技术是基于MultiMedia卡(MMC)格式上发展而来,大小和MMC卡差不多,尺寸为32mmx24mmx2.1mm。长宽和MMC卡一样,只是比MMC卡厚了0.7mm,以容纳更大容量的存贮单元。2、兼容性不同:SD卡与MMC卡保持着向上兼容,…

    2022年6月11日
    32
  • 安装harbor时候报错

    安装harbor时候报错

    2021年5月31日
    92
  • rgbd slam_深度感知摄像头

    rgbd slam_深度感知摄像头‘’工欲善其事必先利其器‘’我们先从能够获取RGBD数据的相机开始谈起。首先我们来看一看其分类。一、根据其工作原理主要分为三类:1.双目方案:(1)原理:http://blog.csdn.net/shenziheng1/article/details/52883536(2)产品:ZED:https://www.stereolabs.com/Tango:http://

    2022年9月18日
    0
  • 第k短路径_利用标幺值进行短路计算

    第k短路径_利用标幺值进行短路计算给定一张 N 个点(编号 1,2…N),M 条边的有向图,求从起点 S 到终点 T 的第 K 短路的长度,路径允许重复经过点或边。注意: 每条最短路中至少要包含一条边。输入格式第一行包含两个整数 N 和 M。接下来 M 行,每行包含三个整数 A,B 和 L,表示点 A 与点 B 之间存在有向边,且边长为 L。最后一行包含三个整数 S,T 和 K,分别表示起点 S,终点 T 和第 K 短路。输出格式输出占一行,包含一个整数,表示第 K 短路的长度,如果第 K 短路不存在,则输出 −1。数据范围

    2022年8月9日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号