POJ2186 Popular Cows 【强连通分量】+【Kosaraju】+【Tarjan】+【Garbow】

POJ2186 Popular Cows 【强连通分量】+【Kosaraju】+【Tarjan】+【Garbow】

大家好,又见面了,我是全栈君。

Popular Cows
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 23445   Accepted: 9605

Description

Every cow’s dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is 

popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow. 

Input

* Line 1: Two space-separated integers, N and M 

* Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular. 

Output

* Line 1: A single integer that is the number of cows who are considered popular by every other cow. 

Sample Input

3 3
1 2
2 1
2 3

Sample Output

1

Hint

Cow 3 is the only cow of high popularity. 

Source

题意:能够转换成“给定一些有向路,求有多少个点能够由其余的随意点到达。

题解:第一道强连通分量的题,大致总结下Kosaraju算法:求强连通分量主要是为了简化图的构造,假设分量外的一个点能到达分量内的当中一个点,那么它必然能到达分量内的全部点,所以某种程度上。强连通分量能够简化成一个点。详细的求解过程是:1、随意选定一个点開始对原图进行深搜,记录每一个点离开时的时间(更确切的说是求每一个时间相应哪个点离开)。2、对原图的反图进行深搜,步骤一中最后离开的点最先開始深搜。每次将同一棵树中的点都哈希成同一个值。最后有多少棵树就有多少个强连通分量。

这题最后全部点都哈希完毕后实际上构成了一个DAG。假设新图中出度为0的点仅仅有一个那么有解,解为该出度为0的强连通分量中原来点的个数。若出度为0的点不止一个,那么无解,由于有两群牛互不崇拜,此时答案为0.在推断连通分量是否有出度时有个小技巧,就是在对反图DFS时若发现连接到的点已訪问且它的哈希值与当前訪问点的哈希值不同。那么这个被连接到的点相应的联通分量是有出度的。然后还需记录每一个连通分量的点数。

#include <stdio.h>
#include <string.h>
#define maxn 10002
#define maxm 50002

int head0[maxn], head1[maxn], id;
int count[maxn], num[maxn], hash[maxn];
struct Node{
    int t0, next0, t1, next1;
} E[maxm];
bool vis[maxn], out[maxn];

void addEdge(int u, int v)
{
    E[id].t0 = v; E[id].next0 = head0[u];
    head0[u] = id; E[id].t1 = u;
    E[id].next1 = head1[v]; head1[v] = id++;
}

void getMap(int n, int m)
{
    int i, u, v; id = 0;
    memset(head0, -1, sizeof(int) * (n + 1)); //save time
    memset(head1, -1, sizeof(int) * (n + 1));
    for(i = 0; i < m; ++i){
        scanf("%d%d", &u, &v);
        addEdge(u, v);
    }
}

void DFS0(int pos, int& sig)
{
    vis[pos] = 1; int i;
    for(i = head0[pos]; i != -1; i = E[i].next0){
        if(!vis[E[i].t0]) DFS0(E[i].t0, sig);
    }
    num[++sig] = pos;
}

void DFS1(int pos, int sig)
{
    vis[pos] = 1; hash[pos] = sig;
    int i; ++count[sig];
    for(i = head1[pos]; i != -1; i = E[i].next1){
        if(!vis[E[i].t1]) DFS1(E[i].t1, sig);
        else if(hash[E[i].t1] != hash[pos]) out[hash[E[i].t1]] = 1;
    }
}

void solve(int n) //Kosaraju
{
    int i, sig = 0, tmp = 0, ans;
    memset(vis, 0, sizeof(bool) * (n + 1));
    for(i = 1; i <= n; ++i)
        if(!vis[i]) DFS0(i, sig);
    memset(vis, 0, sizeof(bool) * (n + 1));
    memset(count, 0, sizeof(int) * (n + 1));
    memset(out, 0, sizeof(bool) * (n + 1));
    i = sig; sig = 0;
    for(; i; --i)
        if(!vis[num[i]]) DFS1(num[i], ++sig);
    for(i = 1; i <= sig; ++i)
        if(!out[i]) ++tmp, ans = count[i];
    //printf("sig%d\n", sig);
    if(tmp == 1) printf("%d\n", ans);
    else printf("0\n");
}

int main()
{
    int n, m;
    while(scanf("%d%d", &n, &m) == 2){
        getMap(n, m);
        solve(n);
    }
    return 0;
}

Tarjan解法:

#include <stdio.h>
#include <string.h>
#define maxn 10002
#define maxm 50002

int head[maxn], vis[maxn], id, id2, scc_num, sec;
int dfn[maxn], low[maxn], sta[maxn], count[maxn];
bool out[maxn];
struct Node{
    int to, next;
} E[maxm];

int min(int a, int b){
    return a < b ?

a : b;}void addEdge(int u, int v){ E[id].to = v; E[id].next = head[u]; head[u] = id++;}void getMap(int n, int m){ int i, u, v; id = 0; memset(head, -1, sizeof(int) * (n + 1)); memset(vis, 0, sizeof(int) * (n + 1)); memset(out, 0, sizeof(bool) * (n + 1)); memset(count, 0, sizeof(int) * (n + 1)); for(i = 0; i < m; ++i){ scanf("%d%d", &u, &v); addEdge(u, v); }}void DFS(int pos) //强连通分量必然是该树的子树{ dfn[pos] = low[pos] = ++sec; vis[pos] = 1; sta[id2++] = pos; int i, u, v; for(i = head[pos]; i != -1; i = E[i].next){ v = E[i].to; if(!vis[v]) DFS(v); if(vis[v] == 1) low[pos] = min(low[pos], low[v]); } if(dfn[pos] == low[pos]){ ++scc_num; do{ ++count[scc_num]; u = sta[--id2]; low[u] = scc_num; vis[u] = 2; } while(u != pos); }}void solve(int n) //Tarjan{ int i, j, ok = 0, ans; sec = id2 = scc_num = 0; for(i = 1; i <= n; ++i) if(!vis[i]) DFS(i); for(i = 1; i <= n; ++i) for(j = head[i]; j != -1; j = E[j].next) if(low[i] != low[E[j].to]){ out[low[i]] = 1; break; } for(i = 1; i <= scc_num; ++i) if(!out[i]){ if(++ok > 1) break; ans = count[i]; } if(ok != 1) printf("0\n"); else printf("%d\n", ans);}int main(){ int n, m; while(scanf("%d%d", &n, &m) == 2){ getMap(n, m); solve(n); } return 0;}

Garbow解法:与Tarjan思想同样,仅仅是实现方式略有不同,效率更高一些。

#include <stdio.h>
#include <string.h>
#define maxn 10002
#define maxm 50002
//sta2用以维护当前连通分量的根
int head[maxn], id, sta1[maxn], id1, sta2[maxn], id2;
int low[maxn], scc[maxn], sccNum, sec, count[maxn];
struct Node{
    int to, next;
} E[maxm];
bool out[maxn];

void addEdge(int u, int v)
{
    E[id].to = v; 
    E[id].next = head[u];
    head[u] = id++;
}

void getMap(int n, int m)
{
    int i, u, v; id = 0;
    memset(head, -1, sizeof(int) * (n + 1));
    for(i = 0; i < m; ++i){
        scanf("%d%d", &u, &v);
        addEdge(u, v);
    }
}

void Garbow(int pos)
{
    low[pos] = ++sec;
    sta1[id1++] = sta2[id2++] = pos;
    for(int i = head[pos]; i != -1; i = E[i].next){
        if(!low[E[i].to]) Garbow(E[i].to);
        else if(!scc[E[i].to]){
            while(low[sta2[id2-1]] > low[E[i].to]) --id2;
        }
    }
    if(pos == sta2[id2-1]){        
        int v; ++sccNum; --id2;
        do{
            v = sta1[--id1];
            scc[v] = sccNum;
            ++count[sccNum];
        } while(sta1[id1] != pos);
    }
}

void solve(int n)
{
    int i, j; id1 = id2 = sec = sccNum = 0;
    memset(low, 0, sizeof(int) * (n + 1));
    memset(scc, 0, sizeof(int) * (n + 1));
    memset(count, 0, sizeof(int) * (n + 1));
    memset(out, 0, sizeof(bool) * (n + 1));
    for(i = 1; i <= n; ++i)
        if(!low[i]) Garbow(i);
    for(i = 1; i <= n; ++i)
        for(j = head[i]; j != -1; j = E[j].next)
            if(scc[i] != scc[E[j].to]){
                out[scc[i]] = 1; break;
            }
    int tmp = 0, ans;
    for(i = 1; i <= sccNum; ++i)
        if(!out[i]){
            if(++tmp > 1){
                ans = 0; break;
            }
            ans = count[i];
        }
    printf("%d\n", ans);
}

int main()
{
    int n, m;
    while(scanf("%d%d", &n, &m) == 2){
        getMap(n, m);
        solve(n);
    }
    return 0;
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/115896.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • c++、webServices、gsoap、tinyxml、iconv

    c++、webServices、gsoap、tinyxml、iconv

    2022年3月13日
    35
  • java和html_如何区别html和html5

    java和html_如何区别html和html5JSP和HTMLJSP代表JavaServerPages;它主要用于开发动态网页,文件的扩展名为.jsp。JSP的主要优点是程序员可以在HTML中插入Java代码;使用JSP标签插入Java代码。程序员可以编写<%标签来启动Java代码,并在Java代码的末尾写入%>标签。JSP允许在HTML文件中插入Java代码HTML代表超文本标记语言。它是众所周知的用于开发网页的标记语言,有助于构建网页结构。JSP和HTML之间的区别1、采用的技术不同HTML是客户端技术,提供

    2025年8月13日
    2
  • C#多线程同步事件及等待句柄

    C#多线程同步事件及等待句柄最近捣鼓了一下多线程的同步问题,发现其实C#关于多线程同步事件处理还是很灵活,这里主要写一下,自己测试的一些代码,涉及到了AutoResetEvent和ManualResetEvent,当然还有也简要提了一下System.Threading.WaitHandle.WaitOne、System.Threading.WaitHandle.WaitAny和System.Threading.Wait

    2022年7月15日
    13
  • mapGetters 辅助函数「建议收藏」

    mapGetters 辅助函数「建议收藏」1:mapGetters:辅助函数mapGetters:辅助函数mapGetters:辅助函数仅仅将store中的getter映射到局部计算属性:1:import{mapGetters}from’vuex’2:exportdefault{computer:{//使用对象展开运算符将getter混入computer对象中…mapGetters([‘getMachin…

    2022年5月2日
    121
  • navicat注册码怎么获得_navicat永久激活码最新

    navicat注册码怎么获得_navicat永久激活码最新产品适用:Navcat产品+中文版+64位注册机百度网盘链接:https://pan.baidu.com/s/1H49nNga9h0WHWKGWAGy18g提取码:ri5d1、cmd进入注册机目录执行命令navicat-patcher.exe”D:\ProgramFiles\PremiumSoft\NavicatPremium12″(navicate的目录)2、执行…

    2022年10月13日
    20
  • 妙用AccessibilityService黑科技实现微信自动加好友拉人进群聊[通俗易懂]

    妙用AccessibilityService黑科技实现微信自动加好友拉人进群聊[通俗易懂]妙用AccessibilityService黑科技实现微信自动加好友拉人进群聊标签:2018引言:在上上周的周六和周日,我发了两篇利用itchat实现微信机器人的文章(Python):小猪的Python学习之旅——18.Python微信转发小宇宙早报小猪的Python学习之旅——19.Python微信自动好友验证,自动回复,发送群聊链接通过把脚本挂到服务器上…

    2022年6月4日
    98

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号