Hive索引

Hive索引

大家好,又见面了,我是全栈君。

1、        Hive索引概述

Hive的索引目的是提高Hive表指定列的查询速度。

没有索引时。类似’WHERE tab1.col1 = 10′ 的查询。Hive会载入整张表或分区。然后处理全部的rows,可是假设在字段col1上面存在索引时。那么仅仅会载入和处理文件的一部分。

与其它传统数据库一样。添加索引在提升查询速度时。会消耗额外资源去创建索引和须要很多其它的磁盘空间存储索引。

Hive 0.7.0版本号中,添加了索引。Hive 0.8.0版本号中添加了bitmap索引。

2、        索引相关的配置參数

hive.index.compact.file.ignore.hdfs

Default Value: false

Added In: Hive 0.7.0 withHIVE-1889

在索引文件里存储的hdfs地址将在执行时被忽略,假设开启的话;假设数据被迁移。那么索引文件依旧可用,默认是false

 

hive.optimize.index.filter

Default Value: false

Added In: Hive 0.8.0 withHIVE-1644

是否自己主动使用索引, 默认是false

 

hive.optimize.index.filter.compact.minsize

Default Value: 5368709120

Added In: Hive 0.8.0 withHIVE-1644

压缩索引自己主动应用的最小输入大小

 

 

 

hive.optimize.index.filter.compact.maxsize

Default Value: -1

Added In: Hive 0.8.0 withHIVE-1644

压缩索引自己主动应用的最大输入大小,负值代表正无穷

 

hive.index.compact.query.max.size

Default Value: 10737418240

Added In: Hive 0.8.0 withHIVE-2096

一个使用压缩索引做的查询能取到的最大数据量。默认是10737418240 个byte;负值代表无穷大;

 

hive.index.compact.query.max.entries

Default Value: 10000000

Added In: Hive 0.8.0 withHIVE-2096

使用压缩索引查询时能读到的最大索引项数,默认是10000000;负值代表无穷大;

 

hive.exec.concatenate.check.index

Default Value: true

Added In: Hive 0.8.0 withHIVE-2125

假设设置为true,那么在做ALTER TABLE tbl_name CONCATENATE on a table/partition(有索引) 操作时,抛出错误;能够帮助用户避免index的删除和重建;

 

hive.optimize.index.groupby

Default Value: false

Added In: Hive 0.8.1 withHIVE-1694

 

 

 

hive.index.compact.binary.search

Default Value: true

Added In: Hive 0.8.1with HIVE-2535

在索引表中是否开启二分搜索进行索引项查询,默认是true。

 

3、        索引演示样例

注意:在Hive 0.12.0以及之前版本号中,索引名称在create index和drop index语句中是大写和小写敏感的。然而,alter index 须要一个小写的索引名字。

此bug在Hive 0.13.0解决,此版本号開始使索引名字大写和小写不敏感。

对于Hive 0.13.0之前的版本号,最好使用小写的索引名字。

以下介绍索引的常见使用方法:

A、       Create/build,show和drop index

create index table01_index ontable table01(column2) as ‘COMPACT’ with deferred rebuild;

show index on table01;

drop index table01_index ontable01;

 

B、       Create then build。show formatted和drop index

create index table02_index ontable table02(column3) as ‘compact’ with deferred rebuild;

alter index table02_index ontable02 rebuild;

show formatted index ontable02;

drop index table02_index ontable02;

 

C、       创建bitmap索引,build,show 和drop

createindex table03_index on table table03 (column4) as ‘bitmap’ with deferred rebuild;

alter index table03_index ontable03 rebuild;

show formatted index ontable03;

drop index table03_index on table03;

D、       在一张新表上创建索引

createindex table04_index on table table04 (column5) as ‘compact’with deferred rebuild in tabletable04_index_table;

E、        创建索引,存储格式为RCFile

create index table05_index ontable table05 (column6) as ‘compact’ with deferred rebuildstored as rcfile;

F、        创建索引。存储格式为TextFile

create index table06_index ontable table06 (column7) as ‘compact’ with deferredrebuild row format delimited fields terminated by ‘\t’ stored as textfile;

G、       创建带有索引属性的索引

create index table07_index ontable table07 (column8) as ‘compact’ with deferred rebuild idxproperties(“prop1″=”value1”, “prop2″=”value2”);

H、       创建带有表属性的索引

create index table08_index ontable table08 (column9) as ‘compact’ withdeferred rebuild tblproperties(“prop3″=”value3”, “prop4″=”value4”);

I、        假设索引存在,则删除

drop index if exists table09_indexon table09;

J、        在分区上重建索引

alter index table10_index on table10partition (columnx=’valueq’, columny=’valuer’) rebuild;

4、        索引測试

(1)  查询表中行数

hive (hive)> select count(1)from userbook;

4409365

(2)  表中未创建索引前查询

hive (hive)> select * fromuserbook where book_id = ‘15999998838’;

Query ID =hadoop_20150627165551_595da79a-0e27-453b-9142-7734912934c4

Total jobs = 1

Launching Job 1 out of 1

Number of reduce tasks is setto 0 since there’s no reduce operator

Starting Job =job_1435392961740_0012, Tracking URL =http://gpmaster:8088/proxy/application_1435392961740_0012/

Kill Command =/home/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1435392961740_0012

Hadoop job information forStage-1: number of mappers: 2; number of reducers: 0

2015-06-27 16:56:04,666 Stage-1map = 0%,  reduce = 0%

2015-06-27 16:56:28,974 Stage-1map = 50%,  reduce = 0%, Cumulative CPU4.36 sec

2015-06-27 16:56:31,123 Stage-1map = 78%,  reduce = 0%, Cumulative CPU6.21 sec

2015-06-27 16:56:34,698 Stage-1map = 100%,  reduce = 0%, Cumulative CPU7.37 sec

MapReduce Total cumulative CPUtime: 7 seconds 370 msec

Ended Job =job_1435392961740_0012

MapReduce Jobs Launched:

Stage-Stage-1: Map: 2   Cumulative CPU: 7.37 sec   HDFS Read: 348355875 HDFS Write: 76 SUCCESS

Total MapReduce CPU Time Spent:7 seconds 370 msec

OK

userbook.book_id    userbook.book_name    userbook.author      userbook.public_date     userbook.address

15999998838     uviWfFJ KwCrDOA    2009-12-27  3b74416d-eb69-48e2-9d0d-09275064691b

Time taken: 45.678 seconds, Fetched: 1 row(s)

 

(3)  创建索引

hive (hive)> create indexuserbook_bookid_idx on table userbook(book_id) as ‘COMPACT’ WITH DEFERREDREBUILD;

(4)  创建索引后再运行查询

hive (hive)> select * fromuserbook where book_id = ‘15999998838’;

Query ID =hadoop_20150627170019_5bb5514a-4c8e-4c47-9347-ed0657e1f2ff

Total jobs = 1

Launching Job 1 out of 1

Number of reduce tasks is setto 0 since there’s no reduce operator

Starting Job =job_1435392961740_0013, Tracking URL = http://gpmaster:8088/proxy/application_1435392961740_0013/

Kill Command =/home/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1435392961740_0013

Hadoop job information forStage-1: number of mappers: 2; number of reducers: 0

2015-06-27 17:00:30,429 Stage-1map = 0%,  reduce = 0%

2015-06-27 17:00:54,003 Stage-1map = 50%,  reduce = 0%, Cumulative CPU7.43 sec

2015-06-27 17:00:56,181 Stage-1map = 78%,  reduce = 0%, Cumulative CPU9.66 sec

2015-06-27 17:00:58,417 Stage-1map = 100%,  reduce = 0%, Cumulative CPU10.83 sec

MapReduce Total cumulative CPUtime: 10 seconds 830 msec

Ended Job =job_1435392961740_0013

MapReduce Jobs Launched:

Stage-Stage-1: Map: 2   Cumulative CPU: 10.83 sec   HDFS Read: 348356271 HDFS Write: 76 SUCCESS

Total MapReduce CPU Time Spent:10 seconds 830 msec

OK

userbook.book_id    userbook.book_name    userbook.author      userbook.public_date     userbook.address

15999998838     uviWfFJ KwCrDOA    2009-12-27  3b74416d-eb69-48e2-9d0d-09275064691b

Time taken: 40.549 seconds, Fetched: 1 row(s)

能够看到创建索引后,速度还是稍快一点的。

事实上对于这样的简单的查询,通过我们的设置,能够不用启动Map/Reduce的,而是启动Fetch task,直接从HDFS文件里filter过滤出须要的数据。须要设置例如以下參数:

set hive.fetch.task.conversion=more;

hive (hive)> select * fromuserbook where book_id = ‘15999998838’;

OK

userbook.book_id    userbook.book_name    userbook.author      userbook.public_date     userbook.address

15999998838     uviWfFJ KwCrDOA    2009-12-27  3b74416d-eb69-48e2-9d0d-09275064691b

Time taken: 0.093 seconds,Fetched: 1 row(s)

能够看到速度更快了。毕竟省略掉了开启MR任务,运行效率提高不少。

參考:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Indexing

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/115996.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • js基本七种数据类型_js原始数据类型

    js基本七种数据类型_js原始数据类型Js中的数据类型虽然也是一个老生常谈的问题,但它经常出现在整个面试的前几问中,面试官会通过你的回答来决定之后问题的走向,比如当你回答基本数据类型时少回答了一个String时,那么面试官很可能就会问你String都有哪写方法哦~

    2022年10月26日
    0
  • 树莓派视觉小车 — 人脸追踪(人脸识别、PID控制舵机运动)[通俗易懂]

    树莓派视觉小车 — 人脸追踪(人脸识别、PID控制舵机运动)[通俗易懂]效果展示基础理论(人脸识别)人脸检测算法按照方法可以被分为两大类,基于特征的算法、基于图像的算法。1、基于特征的算法基于特征的算法就是通过提取图像中的特征和人脸特征进行匹配,如果匹配上了就说明是人脸,反之则不是。提取的特征是人为设计的特征,例如Haar,FHOG,特征提取完之后,再利用分类器去进行判断。通俗的说就是采用模板匹配,就是用人脸的模板图像与待检测的图像中的各个位置进行匹配,匹配的内容就是提取的特征,然后再利用分类器进行判断是否有人脸。…

    2022年5月9日
    38
  • PHP入门:在Windows中安装PHP工作环境

    PHP入门:在Windows系统中分别安装PHP工作环境一、什么是LAMP?Linux+Apache+Mysql+Perl/PHP/Python一组常用来搭建动态网站或者服务器的开源软件,本身都是各

    2021年12月20日
    43
  • 如何用jdbc连接数据库(数据库java连接)

    目录一、介绍1、情况说明2、安装软件及依赖包二、配置连接数据库其他情况一、介绍1、情况说明在这里我使用SpringBoot配置Mybaits连接到PostgreSql数据库的。我的源码也会提供给大家(此文末尾),效果如下数据库:运行效果:2、安装软件及依赖包完整搭建SpringBoot及依赖包:https://blog.csdn.net…

    2022年4月14日
    45
  • raid5和raid10区别和特性_你适合哪种恋爱测试

    raid5和raid10区别和特性_你适合哪种恋爱测试【IT168专稿】存储是目前IT产业发展的一大热点,而RAID技术是构造高性能、海量存储的基础技术,也是构建网络存储的基础技术。专家认为,磁盘阵列的性能优势得益于磁盘运行的并行性,提高设备运行并行度

    2022年8月2日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号