hdu 4661 Message Passing(木DP&组合数学)

hdu 4661 Message Passing(木DP&组合数学)

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

Message Passing

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1187    Accepted Submission(s): 423

Problem Description
There are n people numbered from 1 to n. Each people have a unique message. Some pairs of people can send messages directly to each other, and this relationship forms a structure of a tree. In one turn, exactly one person sends all messages s/he currently has to another person. What is the minimum number of turns needed so that everyone has all the messages?

This is not your task. Your task is: count the number of ways that minimizes the number of turns. Two ways are different if there exists some k such that in the k-th turn, the sender or receiver is different in the two ways.

 

Input
First line, number of test cases, T.

Following are T test cases.

For each test case, the first line is number of people, n. Following are n-1 lines. Each line contains two numbers.

Sum of all n <= 1000000.

 

Output
T lines, each line is answer to the corresponding test case. Since the answers may be very large, you should output them modulo 10
9+7.
 

Sample Input
   
   
2 2 1 2 3 1 2 2 3

 

Sample Output
   
   
2 6

 

Source

Recommend
 题意:
n个人,构成树形关系。每一个人有一条独一无二的信息。每一个人能够将自己的信息通过树边。共享给与他相邻的人,共享之后。被共享的人拥有他原有的信息和共享的来的信息。

每次共享为一次操作。问每一个人都拥有全部人的信息最小要的次数的共享方法有多少种。

思路:
easy的出。最短的时间内。当然是每一个节点将自己的信息想外传出去一次。而且接受一次信息,也就是树边的2倍2*(n-1)。
然后能够证明。在最短时间内,全部的传递方式都有一个“信息转换点”——其它节点的信息首先传递到此节点,然后信息再从这个节点向其它节点传递。

事实上我们要求的就是拓扑序有多少种。定义dp[u]表示u节点下面。传到u节点的拓扑序有多少种,cnt[u]表示u有多少个子孙节点,f[i] = i!(i的阶乘)。c[i][j]表示组合数。

如果它有v1,v2,v3个节点。它们的拓扑序分别有dp[v1],dp[v2],dp[v3]这么多种。

那么dp[u] = c[cnt[u]-1][cnt[v1]] * c[cnt[u]-1-cnt[v1]][cnt[v2]] * c[cnt[u]-1-cnt[v1]-cnt[v2]][cnt[v3]] * dp[v1] * dp[v2] * dp[v3](这个自己推推吧)。化简以后。得到dp[u] = f[cnt[u]-1] / ( f[cnt[v1]] * f[cnt[v2]] * f[cnt[v3]] ) * dp[v1] * dp[v2] * dp[v3] 。我们能够在o(n)的时间复杂度内算出以1节点为根的全部dp值(那么以1为根的答案就算出来了)。以及其它一些辅助信息的值。然后按树的结构往下遍历。分别计算以其它节点为根的答案。以上是网上的思路。我想说的是自己的一点理解。为什么知道每一个子树的拓扑序数目。就能够退出自己的拓扑序数目呢。事实上非常好理解的。当每一个子树的拓扑序定下来之后。确定总顺序的时候。

也就是要得到一个长度为cnt[u]拓扑序列。

对于子树i。

也有一个长度为cnt[i]拓扑序列,所以就要在cnt[u]里找cnt[i]个位置。其它子树再在剩下的子树里找。

还有换根的时候该怎么推导。先写出

dp[u]’=dp[u]*(n-sz[v]-1)!*sz[v]!/((n-1)!*dp[v])
dp[v]’=dp[v]*(n-1)!*dp[u]’/((sz[v]-1)!*(n-sz[v])!)。

带入dp[u]’就能够约掉非常多东西了。所以推公式的时候不要急着得到最后答案。还有就是为什么答案数就是拓扑序数的平方。

由于信息传回去的时候就是你拓扑序嘛。和拓扑序数目一样的。

每个正拓扑序能够和一个逆拓扑序组合。所以就有平方种啦。

具体见代码:

#include<algorithm>
#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=1000010;
#pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long ll;
const ll mod=1e9+7;
ll fac[maxn],dp[maxn],ans;
int cnt,sz[maxn],n;
struct node
{
    int v;
    node *next;
} ed[maxn<<1],*head[maxn];
void adde(int u,int v)
{
    ed[cnt].v=v;
    ed[cnt].next=head[u];
    head[u]=&ed[cnt++];
}
ll pow_mod(ll x,int k)
{
    ll base=x,ret=1;
    while(k)
    {
        if(k&1)
            ret=(ret*base)%mod;
        base=(base*base)%mod;
        k>>=1;
    }
    return ret;
}
ll ni(ll x){    return pow_mod(x,mod-2);    }
void dfs(int fa,int u)
{
    ll tp;
    dp[u]=tp=sz[u]=1;
    for(node *p=head[u];p!=NULL;p=p->next)
    {
        int v=p->v;
        if(v==fa)
            continue;
        dfs(u,v);
        tp=(tp*ni(fac[sz[v]]))%mod;
        dp[u]=(dp[u]*dp[v])%mod;
        sz[u]+=sz[v];
    }
    dp[u]=(dp[u]*fac[sz[u]-1]%mod*tp)%mod;
}
void solve(int fa,int u,ll tp)
{
    ll tt;
    ans=(ans+tp*tp%mod)%mod;
    for(node *p=head[u];p!=NULL;p=p->next)
    {
        int v=p->v;
        if(v==fa)
            continue;
        tt=(tp*fac[n-sz[v]-1]%mod*fac[sz[v]])%mod;
        tt=(tt*ni(fac[sz[v]-1])%mod*ni(fac[n-sz[v]]))%mod;
        solve(u,v,tt);
    }
}
int main()
{
    int t,i,u,v,rt;

    fac[0]=fac[1]=1;
    for(i=2;i<maxn;i++)
        fac[i]=(i*fac[i-1])%mod;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        cnt=0,ans=0;
        for(i=1;i<=n;i++)
            head[i]=NULL;
        for(i=1;i<n;i++)
        {
            scanf("%d%d",&u,&v);
            adde(u,v);
            adde(v,u);
        }
        rt=(n+1)/2;
        dfs(-1,rt);
        solve(-1,rt,dp[rt]);
        printf("%I64d\n",ans);
    }
    return 0;
}


版权声明:本文博主原创文章,博客,未经同意不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/116894.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • golang操作elasticsearch详解[通俗易懂]

    golang操作elasticsearch详解[通俗易懂]golang操作elasticsearch详解直接上代码packagemainimport( “bytes” “context” “fmt” “github.com/olivere/elastic/v7” “log” “strconv”)constIndexName=”test_index”funcmain(){ IsDocExists(“xxx”,IndexName)}//获取Es客户端funcGetEsClient()*elastic.Clie

    2022年5月5日
    61
  • Redis集群搭建(非常详细)

    Redis集群搭建(非常详细)https blog csdn net article details redis 集群搭建在开始 redis 集群搭建之前 我们先简单回顾一下 redis 单机版的搭建过程 下载 redis 压缩包 然后解压压缩文件 进入到解压缩后的 redis 文件目录 此时可以看到 Makefile 文件 编译 redis 源文件 把编译好的 redis 源文件安装到 usr local redis 目录下 如果 local 目录下没有 redis 目录 会自动新建 r

    2025年10月28日
    3
  • 强化学习之模仿学习

    强化学习之模仿学习原文链接:https://blog.csdn.net/weixin_37895339/article/details/82863379前文是一些针对IRL,IL综述性的解释,后文是针对《Generativeadversarialimitationlearning》文章的理解及公式的推导。通过深度强化学习,我们能够让机器人针对一个任务实现从0到1的学习,但是需要我们定义出reward函数,在很多复杂任务,例如无人驾驶中,很难根据状态特征来建立一个科学合理的reward。人类学习新东西有一个重要的

    2022年9月19日
    5
  • 狭义相对论的一点点理解

    狭义相对论的一点点理解

    2021年9月3日
    61
  • ubuntu12.04 安装rabbitvcs[通俗易懂]

    ubuntu12.04 安装rabbitvcs[通俗易懂]习惯了在windows下的Tortoisesvn,所以转到ubuntu下面很不习惯命令行的svn。而且,个人感觉如果需要showlog和diff的话都很不爽。今天和一个朋友聊天,他推荐我使用RabbitVCS。类似与Tortoisesvn。安装RabbitVCS的方法步骤如下:1、sudoadd-apt-repositoryppa:rabbitvcs/ppa     #将rab

    2022年7月18日
    17
  • CreateEvent方法详解

    CreateEvent方法详解HANDLECreateEvent(  LPSECURITY_ATTRIBUTESlpEventAttributes,//安全属性  BOOLbManualReset,//复位方式  BOOLbInitialState,//初始状态  LPCTSTRlpName//对象名称);调用示例:hEvent=CreateEvent(NULL,TRUE,…

    2022年7月12日
    24

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号