蚁群算法 matlab程序(已执行)

蚁群算法 matlab程序(已执行)

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

全栈程序员社区此处内容已经被作者隐藏,请输入验证码查看内容
验证码:
请关注本站微信公众号,回复“验证码”,获取验证码。在微信里搜索“全栈程序员社区”或者“www_javaforall_cn”或者微信扫描右侧二维码都可以关注本站微信公众号。

下面是解放军信息project大学一个老师编的matlab程序,请尊重原作者劳动,引用时请注明出处。

我经过改动添加了凝视,已经执行过,无误,

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)

%%————————————————————————-

%% 主要符号说明

%% C n个城市的坐标,n×2的矩阵

%% NC_max 最大迭代次数

%% m 蚂蚁个数

%% Alpha 表征信息素重要程度的參数

%% Beta 表征启示式因子重要程度的參数

%% Rho 信息素蒸发系数

%% Q 信息素添加强度系数

%% R_best 各代最佳路线

%% L_best 各代最佳路线的长度

%%=========================================================================

%%第一步:变量初始化

n=size(C,1);%n表示问题的规模(城市个数)

D=zeros(n,n);%D表示全然图的赋权邻接矩阵

for i=1:n

for j=1:n

if i~=j

D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;

else

D(i,j)=eps;      %i=j时不计算,应该为0,但后面的启示因子要取倒数,用eps(浮点相对精度)表示

end

D(j,i)=D(i,j);   %对称矩阵

end

end

Eta=1./D;          %Eta为启示因子,这里设为距离的倒数

Tau=ones(n,n);     %Tau为信息素矩阵

Tabu=zeros(m,n);   %存储并记录路径的生成

NC=1;               %迭代计数器,记录迭代次数

R_best=zeros(NC_max,n);       %各代最佳路线

L_best=inf.*ones(NC_max,1);   %各代最佳路线的长度

L_ave=zeros(NC_max,1);        %各代路线的平均长度

while NC<=NC_max        %停止条件之中的一个:达到最大迭代次数,停止

%%第二步:将m仅仅蚂蚁放到n个城市上

Randpos=[];   %随即存取

for i=1:(ceil(m/n))

Randpos=[Randpos,randperm(n)];

end

Tabu(:,1)=(Randpos(1,1:m))’;    %此句不太理解?

%%第三步:m仅仅蚂蚁按概率函数选择下一座城市,完毕各自的周游

for j=2:n     %所在城市不计算

for i=1:m    

visited=Tabu(i,1:(j-1)); %记录已訪问的城市,避免反复訪问

J=zeros(1,(n-j+1));       %待訪问的城市

P=J;                      %待訪问城市的选择概率分布

Jc=1;

for k=1:n

if length(find(visited==k))==0   %開始时置0

J(Jc)=k;

Jc=Jc+1;                         %訪问的城市个数自加1

end

end

%以下计算待选城市的概率分布

for k=1:length(J)

P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);

end

P=P/(sum(P));

%按概率原则选取下一个城市

Pcum=cumsum(P);     %cumsum,元素累加即求和

Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线

to_visit=J(Select(1));

Tabu(i,j)=to_visit;

end

end

if NC>=2

Tabu(1,:)=R_best(NC-1,:);

end

%%第四步:记录本次迭代最佳路线

L=zeros(m,1);     %開始距离为0m*1的列向量

for i=1:m

R=Tabu(i,:);

for j=1:(n-1)

L(i)=L(i)+D(R(j),R(j+1));    %原距离加上第j个城市到第j+1个城市的距离

end

L(i)=L(i)+D(R(1),R(n));      %一轮下来后走过的距离

end

L_best(NC)=min(L);           %最佳距离取最小

pos=find(L==L_best(NC));

R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线

L_ave(NC)=mean(L);           %此轮迭代后的平均距离

NC=NC+1                      %迭代继续

%%第五步:更新信息素

Delta_Tau=zeros(n,n);        %開始时信息素为n*n0矩阵

for i=1:m

for j=1:(n-1)

Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);          

%此次循环在路径(ij)上的信息素增量

end

Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);

%此次循环在整个路径上的信息素增量

end

Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素

%%第六步:禁忌表清零

Tabu=zeros(m,n);             %%直到最大迭代次数

end

%%第七步:输出结果

Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)

Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径

Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离

subplot(1,2,1)                  %绘制第一个子图形

DrawRoute(C,Shortest_Route)     %画路线图的子函数

subplot(1,2,2)                  %绘制第二个子图形

plot(L_best)

hold on                         %保持图形

plot(L_ave,’r’)

title(‘平均距离和最短距离‘)     %标题

function DrawRoute(C,R)

%%=========================================================================

%% DrawRoute.m

%% 画路线图的子函数

%%————————————————————————-

%% C Coordinate 节点坐标,由一个N×2的矩阵存储

%% R Route 路线

%%=========================================================================

N=length(R);

scatter(C(:,1),C(:,2));

hold on

plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],‘g’)

hold on

for ii=2:N

plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],’g’)

hold on

end

title(‘旅行商问题优化结果 ‘)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/117943.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • PHPer面试指南-php 篇(二)「建议收藏」

    PHPer面试指南-php 篇(二)

    2022年2月11日
    53
  • 为什么会有内存屏障呢_内存出问题有什么现象

    为什么会有内存屏障呢_内存出问题有什么现象复习一下内存屏障主要解决指令重排和可见性,需要了解JMM架构原文链接为什么会有内存屏障每个CPU都会有自己的缓存(有的甚至L1,L2,L3),缓存的目的就是为了提高性能,避免每次都要向内存取。但是这样的弊端也很明显:不能实时的和内存发生信息交换,分在不同CPU执行的不同线程对同一个变量的缓存值不同。用volatile关键字修饰变量可以解决上述问题,那么volatile是如何做到这一点的呢?那就是内存屏障,内存屏障是硬件层的概念,不同的硬件平台实现内存屏障的手段并不是一样,java通过屏蔽这些差异,统

    2022年8月8日
    6
  • JetBrick 入门详解

    JetBrick 入门详解JetBrick的简单使用方法,仅作为简单的入门,不做内部详细的探讨。

    2022年6月17日
    36
  • ps切图html自适应屏幕,ps CC自动切图与前端CSS代码

    ps切图html自适应屏幕,ps CC自动切图与前端CSS代码Photoshop是视觉设计师最强有力的武器之一,其实Photoshop也为前端开发同学带来很多惊喜。特别是从PhotoshopCC版本开始,它变得越来越有趣。今天笔者就其中几个新特性给大家介绍一下。如果您也有更多新的发现,请在下方留言与大家进行讨论。自动切图(含WebP、SVG格式):前端开发人员经常需要将很多图层切出成独立的图片。有了自动切图功能,无需花更多时间来切图了。只需在图层…

    2025年7月26日
    4
  • 一文读懂 SIP 协议

    一文读懂 SIP 协议SIP 是由 IETF 制定的多媒体通信协议 广泛应用于 CS NGN 以及 IMS 的网络中 可以支持并应用于语音 视频 数据等多媒体业务 同时也可以应用于 Presence 呈现 InstantMessa 即时消息 等特色业务 可以说 有 IP 网络的地方就有 SIP 协议的存在 SIP 是类似于 HTTP SIP 可以减少应用特别是高级应用的开发时间 由于 基于 IP 协议的 SIP 利用了 IP 网络 固定网运营商也会逐渐认识到 SIP 技术对于他们的远意义

    2025年6月14日
    6
  • MicroBlaze使用_char* malloc

    MicroBlaze使用_char* malloc转自http://blog.163.com/gcs_gcs/blog/static/17448606620121193113914/在最近的工程中,需要用到PS/2键盘和鼠标作为控制输入,所以在网上找了一些相关的资料,内容很丰富,看来已经有很多人做过了这方面的编程。本篇Blog算是实践总结,为以后的开发积累一些基础知识。MicroBlaze支持重启(reset),中断(interrupt),暂…

    2025年8月18日
    7

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号