斯坦福ML公开课笔记14——主成分分析

斯坦福ML公开课笔记14——主成分分析

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

全栈程序员社区此处内容已经被作者隐藏,请输入验证码查看内容
验证码:
请关注本站微信公众号,回复“验证码”,获取验证码。在微信里搜索“全栈程序员社区”或者“www_javaforall_cn”或者微信扫描右侧二维码都可以关注本站微信公众号。

上一篇笔记中,介绍了因子分析模型,因子分析模型使用d维子空间的隐含变量z来拟合训练数据,所以实际上因子分析模型是一种数据降维的方法,它基于一个概率模型,使用EM算法来预计參数。

本篇主要介绍PCA(Principal Components Analysis, 主成分分析),也是一种降维方法,可是该方法比較直接,仅仅需计算特征向量就能够进行降维了。本篇相应的视频是公开课的第14个视频,该视频的前半部分为因子分析模型的EM求解,已写入笔记13,本篇仅仅是后半部分的笔记,所以内容较少。

斯坦福ML公开课笔记14——主成分分析

斯坦福ML公开课笔记14——主成分分析

斯坦福ML公开课笔记14——主成分分析


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/117970.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号