【转载】单点系统架构的可用性与性能优化

【转载】单点系统架构的可用性与性能优化

一、需求缘起

明明架构要求高可用,为何系统中还会存在单点?

回答:单点master的设计,会大大简化系统设计,何况有时候避免不了单点

在哪些场景中会存在单点?先来看一下一个典型互联网高可用架构。

0a46823d9bcfa6e7b7348b96deab0ece
典型互联网高可用架构:

(1)客户端层,这一层是浏览器或者APP,第一步先访问DNS-server,由域名拿到nginx的外网IP

(2)负载均衡层,nginx是整个服务端的入口,负责反向代理与负载均衡工作

(3)站点层,web-server层,典型的是tomcat或者apache

(4)服务层,service层,典型的是dubbo或者thrift等提供RPC调用的后端服务

(5)数据层,包含cache和db,典型的是主从复制读写分离的db架构

在这个互联网架构中,站点层、服务层、数据库的从库都可以通过冗余的方式来保证高可用,但至少

(1)nginx层是一个潜在的单点

(2)数据库写库master也是一个潜在的单点

再举一个GFS(Google File System)架构的例子。

d559a36b6e135c00cedb91d68c41438d
GFS的系统架构里主要有这么几种角色:

(1)client,就是发起文件读写的调用端

(2)master,这是一个单点服务,它有全局事业,掌握文件元信息

(3)chunk-server,实际存储文件额服务器

这个系统里,master也是一个单点的服务,Map-reduce系统里也有类似的全局协调的master单点角色。

系统架构设计中,像nginx,db-master,gfs-master这样的单点服务,会存在什么问题,有什么方案来优化呢,这是本文要讨论的问题。

 

二、单点架构存在的问题

单点系统一般来说存在两个很大的问题:

(1)非高可用:既然是单点,master一旦发生故障,服务就会受到影响

(2)性能瓶颈:既然是单点,不具备良好的扩展性,服务性能总有一个上限,这个单点的性能上限往往就是整个系统的性能上限

接下来,就看看有什么优化手段可以优化上面提到的两个问题

 

三、shadow-master解决单点高可用问题

shadow-master是一种很常见的解决单点高可用问题的技术方案。

“影子master”,顾名思义,服务正常时,它只是单点master的一个影子,在master出现故障时,shadow-master会自动变成master,继续提供服务。

shadow-master它能够解决高可用的问题,并且故障的转移是自动的,不需要人工介入,但不足是它使服务资源的利用率降为了50%,业内经常使用keepalived+vip的方式实现这类单点的高可用

f79d04135838d00b1e0be66770875850
以GFS的master为例,master正常时:

(1)client会连接正常的master,shadow-master不对外提供服务

(2)master与shadow-master之间有一种存活探测机制

(3)master与shadow-master有相同的虚IP(virtual-IP)

e7d7afb6115502c814b0555659fb6524
当发现master异常时:

shadow-master会自动顶上成为master,虚IP机制可以保证这个过程对调用方是透明的

除了GFS与MapReduce系统中的主控master,nginx亦可用类似的方式保证高可用,数据库的主库master(主库)亦可用类似的方式来保证高可用,只是细节上有些地方要注意:

c409d0fc5caaafc0309690c6b2c17b54
传统的一主多从,读写分离的db架构,只能保证读库的高可用,是无法保证写库的高可用的,要想保证写库的高可用,也可以使用上述的shadow-master机制:

8f7921ecabf078fc0d85cd2ba67eae7c
(1)两个主库设置相互同步的双主模式

(2)平时只有一个主库提供服务,言下之意,shadow-master不会往master同步数据

(3)异常时,虚IP漂移到另一个主库,shadow-master变成主库继续提供服务

需要说明的是,由于数据库的特殊性,数据同步需要时延,如果数据还没有同步完成,流量就切到了shadow-master,可能引起小部分数据的不一致。

 

四、减少与单点的交互,是存在单点的系统优化的核心方向

既然知道单点存在性能上限,单点的性能(例如GFS中的master)有可能成为系统的瓶颈,那么,减少与单点的交互,便成了存在单点的系统优化的核心方向。

怎么来减少与单点的交互,这里提两种常见的方法。

批量写

批量写是一种常见的提升单点性能的方式。

例如一个利用数据库写单点生成做“ID生成器”的例子:

3e910109ca3ef7a65dda7d7c80924949
(1)业务方需要ID

(2)利用数据库写单点的auto increament id来生成和返回ID

这是一个很常见的例子,很多公司也就是这么生成ID的,它利用了数据库写单点的特性,方便快捷,无额外开发成本,是一个非常帅气的方案。

潜在的问题是:生成ID的并发上限,取决于单点数据库的写性能上限。

如何提升性能呢?批量写

11d4ee7fa9151c45b9ab69eaf73fe9a8
(1)中间加一个服务,每次从数据库拿出100个id

(2)业务方需要ID

(3)服务直接返回100个id中的1个,100个分配完,再访问数据库

这样一来,每分配100个才会写数据库一次,分配id的性能可以认为提升了100倍。

客户端缓存

客户端缓存也是一种降低与单点交互次数,提升系统整体性能的方法。

还是以GFS文件系统为例:

a53534789a48fee406189caf786d2848
(1)GFS的调用客户端client要访问shenjian.txt,先查询本地缓存,miss了

(2)client访问master问说文件在哪里,master告诉client在chunk3上

(3)client把shenjian.txt存放在chunk3上记录到本地的缓存,然后进行文件的读写操作

(4)未来client要访问文件,从本地缓存中查找到对应的记录,就不用再请求master了,可以直接访问chunk-server。如果文件发生了转移,chunk3返回client说“文件不在我这儿了”,client再访问master,询问文件所在的服务器。

根据经验,这类缓存的命中非常非常高,可能在99.9%以上(因为文件的自动迁移是小概率事件),这样与master的交互次数就降低了1000倍。

 

五、水平扩展是提升单点系统性能的好方案

无论怎么批量写,客户端缓存,单点毕竟是单机,还是有性能上限的。

想方设法水平扩展,消除系统单点,理论上才能够无限的提升系统系统。

以nginx为例,如何来进行水平扩展呢?

07414070ed817c2145b37d6363dbe2fc
第一步的DNS解析,只能返回一个nginx外网IP么?答案显然是否定的,“DNS轮询”技术支持DNS-server返回不同的nginx外网IP,这样就能实现nginx负载均衡层的水平扩展。

0edbd3081cc179fd8195375fb4e10845
DNS-server部分,一个域名可以配置多个IP,每次DNS解析请求,轮询返回不同的IP,就能实现nginx的水平扩展,扩充负载均衡层的整体性能。

数据库单点写库也是同样的道理,在数据量很大的情况下,可以通过水平拆分,来提升写入性能。

遗憾的是,并不是所有的业务场景都可以水平拆分,例如秒杀业务,商品的条数可能不多,数据库的数据量不大,就不能通过水平拆分来提升秒杀系统的整体写性能(总不能一个库100条记录吧?)。

 

六、总结

今天的话题就讨论到这里,内容很多,占用大家宝贵的时间深表内疚,估计大部分都记不住,至少记住这几个点吧:

(1)单点系统存在的问题:可用性问题,性能瓶颈问题

(2)shadow-master是一种常见的解决单点系统可用性问题的方案

(3)减少与单点的交互,是存在单点的系统优化的核心方向,常见方法有批量写,客户端缓存

(4)水平扩展也是提升单点系统性能的好方案

如果有收获,帮忙随手转发哟。

==【完】==

 

【转自】58沈剑 架构师之路

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/119381.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • win7下vs2008过期没有输入序列号的解决办法[通俗易懂]

    win7下vs2008过期没有输入序列号的解决办法[通俗易懂]vs2008在win7下过期后,无法找到升级的序列号输入框。使用网上修改Setup\setup.sdb不得法,输入序列号却没有输入的地方。经过查找发现在win7下序列号输入框已被隐藏,使用打补丁方式可现实输入框。

    2022年8月10日
    17
  • android在eclipse环境下开发需要什么支持_eclipse环境配置教程

    android在eclipse环境下开发需要什么支持_eclipse环境配置教程eclipse中android环境配置java环境配置java下载去Oracle官网下载自己需要的java版本我这里选择的是windows的jdk8ps:下载需要登录自己Oracle账号,注册登录一下就行下载之后的exe文件双击开,安装到你需要安装的位置即可,我这里安装位置是D:\ProgramFiles\Java\jdk1.8.0_271环境配置在系统变量里面加入了变量JAVA_HOME,值为安装的位置然后在Path里面加入了%JAVA_HOME%\bin和%JAVA_HOME

    2022年10月5日
    2
  • idea搭建javaweb环境_java怎么打开项目

    idea搭建javaweb环境_java怎么打开项目【第一步】新建项目【第二步】点击JavaEnterprise,选择Webapplication,选择已经下载好的Tomcat,选择服务的jdk【第三步】选择框架支撑【第四步】完成创建目录介绍【第五步】配置jar包和classes包,首先在WEB-INF下面新建两个文件夹,classes和lib(装载jar包的,利于使用jstl标签)【第六步】在file中找到ProjectStructure【第七步】点击Modules,选择P…

    2022年9月20日
    3
  • CentOS 7 x8安装记录

    CentOS 7 x8安装记录CentOS7x8安装插入刻录好的U盘(刻录这里我就不说了,有实用的刻录链接可以下方留言给我我补充上)按下拥有弹性的开机按钮,开启你的装机旅程,启动时注意!按F11进入BootMenu一、在BootMenu中选择UEFI:VendorCoProductCode,Partition1如果选择了VendorCoProductCode安装结束后,启动系统后就会下面这副惨样子…

    2022年5月25日
    79
  • ForkJoin使用「建议收藏」

    ForkJoin使用「建议收藏」Fork/Join框架是Java7提供的一个用于并行执行任务的框架,是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架。Fork/Join框架要完成两件事情:  1.任务分割:首先Fork/Join框架需要把大的任务分割成足够小的子任务,如果子任务比较大的话还要对子任务进行继续分割  2.执行任务并合并结果:分割的子任务分别放到双端队列里,然后几个启动线程分别从双端队…

    2022年9月20日
    3
  • 简单的12864显示程序

    简单的12864显示程序12864

    2022年7月2日
    24

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号