决策树算法(ID3)

决策树算法(ID3)

Day

Outlook

Temperature

Humidity

Wind

PlayTennis

1

Sunny

Hot

High

Weak

No

2

Sunny

Hot

High

Strong

No

3

Overcast

Hot

High

Weak

Yes

4

Rain

Mild

High

Weak

Yes

5

Rain

Cool

Normal

Weak

Yes

6

Rain

Cool

Normal

Strong

No

7

Overcast

Cool

Normal

Strong

Yes

8

Sunny

Mild

High

Weak

No

9

Sunny

Cool

Normal

Weak

Yes

10

Rain

Mild

Normal

Weak

Yes

11

Sunny

Mild

Normal

Strong

Yes

12

Overcast

Mild

High

Strong

Yes

13

Overcast

Hot

Normal

Weak

Yes

14

Rain

Mild

High

Strong

No

对于上面例子,如何判断是否要去playtennis?

可以采用决策树的方式。

决策树是一种以实例为基础的归纳学习算法。从无序列/无规则的数据中,推导出树形表示的分类判决。

优点:计算量小、显示清晰

缺点:容易过拟合(需要修枝)(譬如,使用day做判决,一一对应虽然很准确,但是不能用在其他地方)、对时间顺序的数据,需要过多预处理工作

 

ID3算法:

1、对于实例,计算各个属性的信息增益

2、对于信息增益最大的属性P作为根节点,P的各个取值的样本作为子集进行分类

3、对于子集下,若只含有正例或反例,直接得到判决;否则递归调用算法,再次寻找子节点

 

<span>决策树算法(ID3)</span>

 

熵:表示随机变量的不确定性。

条件熵:在一个条件下,随机变量的不确定性。

信息增益:熵 – 条件熵,在一个条件下,信息不确定性减少的程度。

 

用信息增益最大的属性作为结点,是因为最终去不去打球的不确定性,在获得该属性的结果后,不确定性大大降低。

也就是说,该属性对于打球的选择很重要。

 

 

对于解决上述问题,

首先,计算系统熵,PlayTennis

P(No) = 5/14

P(Yes) = 9/14

Entropy(S) = -(9/14)*log(9/14)-(5/14)*log(5/14) = 0.94

 

然后,计算各个属性的熵。

譬如:Wind

其中,Wind中取值为weak的记录有8条,其中,playtennis的正例6个,负例2个;取值为strong的记录有6条,正例为3个,负例为3个。

Entrogy(weak) = -(6/8)*log(6/8)-(2/8)*log(2/8) = 0.811

Entrogy(strong) = -(3/6)*log(3/6)-(3/6)*log(3/6) = 1.0

对应的信息增益为:

Gain(Wind) = Entropy(S) – (8/14)* Entrogy(weak)-(6/14)* Entrogy(strong) = 0.048

 

同理,Gain(Humidity = 0.151;Gain(Outlook = 0.247;Gain(Temperature = 0.029

 

此时,可以得到跟节点为:Outlook

对应点决策树:

Outlook分为三个集合:

Sunny:{1,2,8,9,11},正例:2、反例:3

Overcast:{3,7,12,13},正例:4、反例:0

Rain:{4,5,6,10,14},正例:3、反例:2

至此,可以得到:

Sunny:

Day

Outlook

Temperature

Humidity

Wind

PlayTennis

1

Sunny

Hot

High

Weak

No

2

Sunny

Hot

High

Strong

No

8

Sunny

Mild

High

Weak

No

9

Sunny

Cool

Normal

Weak

Yes

11

Sunny

Mild

Normal

Strong

Yes

 

Entropy(S) = -(3/5)*log(3/5)-(2/5)*log(2/5) = 0.971

对于Wind,weak时,正例为1,反例为2;Strong时,正例为1,反例为1.

Entrogy(weak) = -(1/3)*log(1/3)-(2/3)*log(2/3) = 0.918

Entrogy(strong) = -(1/2)*log(1/2)-(1/2)*log(1/2) = 1

 

Gain(Wind) = Entropy(S) – 3/5* Entrogy(weak)-2/5* Entrogy(strong) = 0.0202

 

同理,Gain(Humidity) = 0.971;Gain(Temperature) = 0.571

 

 

此时,可以画出部分决策树:

 

 

<span>决策树算法(ID3)</span>

 

其中,python代码:

import math
#香农公式计算信息熵
def calcShannonEnt(dataset):
    numEntries = len(dataset)
    labelCounts = {}
    for featVec in dataset:
        currentLabel = featVec[-1]#最后一位表示分类
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] +=1
         
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob*math.log(prob, 2)
    return shannonEnt
     
def CreateDataSet():
    dataset = [['sunny', 'hot','high','weak', 'no' ],
               ['sunny', 'hot','high','strong', 'no' ],
               ['overcast', 'hot','high','weak', 'yes' ],
               ['rain', 'mild','high','weak', 'yes' ],
               ['rain', 'cool','normal','weak', 'yes' ],
                ['rain', 'cool','normal','strong', 'no' ],
                ['overcast', 'cool','normal','strong', 'yes' ],
                ['sunny', 'mild','high','weak', 'no' ],
                ['sunny', 'cool','normal','weak', 'yes' ],
                ['rain', 'mild','normal','weak', 'yes' ],
                ['sunny', 'mild','normal','strong', 'yes' ],
                ['overcast', 'mild','high','strong', 'yes' ],
                ['overcast', 'hot','normal','weak', 'yes' ],
                ['rain', 'mild','high','strong', 'no' ],
               ]
    labels = ['outlook', 'temperature', 'humidity', 'wind']
    return dataset, labels
#选取属性axis的值value的样本表
def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
     
    return retDataSet
#选取信息增益最大的属性作为节点
def chooseBestFeatureToSplit(dataSet):
    numberFeatures = len(dataSet[0])-1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numberFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)
        newEntropy =0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        if(infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature
#对于属性已经用完,仍然没有分类的情况,采用投票表决的方法 
def majorityCnt(classList):
    classCount ={}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote]=0
        classCount[vote] += 1
    return max(classCount)
  
 
def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    #类别相同停止划分
    if classList.count(classList[0])==len(classList):
        return classList[0]
    #属性用完,投票表决
    if len(dataSet[0])==1:
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
    return myTree
 
         
         
myDat,labels = CreateDataSet()
tree = createTree(myDat,labels)
print tree

  

 在计算决策树的时候,sklearn库提供了决策树的计算方法(tree),但是,这个库提供的是:

scikit-learn uses an optimised version of the CART algorithm.

对于本文中使用的ID3算法是不支持的。

 然而https://pypi.python.org/pypi/decision-tree-id3/0.1.2

该库支持ID3算法。

按照官网说明,注意安装时的依赖库的版本,该升级的升级,该安装的安装即可。‘

from id3 import Id3Estimator
from id3 import export_graphviz

X = [['sunny',    'hot',   'high',   'weak'],
     ['sunny',    'hot',   'high',   'strong'], 
     ['overcast', 'hot',   'high',   'weak'], 
     ['rain',     'mild',  'high',   'weak'], 
     ['rain',     'cool',  'normal', 'weak'], 
     ['rain',     'cool',  'normal', 'strong'], 
     ['overcast', 'cool',  'normal', 'strong'], 
     ['sunny',    'mild',  'high',   'weak'], 
     ['sunny',    'cool',  'normal', 'weak'], 
     ['rain',     'mild',  'normal', 'weak'], 
     ['sunny',    'mild',  'normal', 'strong'], 
     ['overcast', 'mild',  'high',   'strong'], 
     ['overcast', 'hot',   'normal', 'weak'], 
     ['rain',     'mild',  'high',   'strong'], 
]
Y = ['no','no','yes','yes','yes','no','yes','no','yes','yes','yes','yes','yes','no']
f = ['outlook','temperature','humidity','wind']
estimator = Id3Estimator()
estimator.fit(X, Y,check_input=True)
export_graphviz(estimator.tree_, 'tree.dot', f)

  然后通过GraphViz工具生成PDF

dot -Tpdf tree.dot -o tree.pdf

  结果:

<span>决策树算法(ID3)</span>

 

当然,你也可以进行预测判断:

print estimator.predict([['rain',     'mild',  'high',   'strong']])

  <span>决策树算法(ID3)</span>

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/119485.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • MATLAB 插值放大

    MATLAB 插值放大采用matlab内部的函数来实现最邻近插值、双线性插值和双三次插值,实现2倍放大。代码如下:I=imread(‘lena.bmp’);imshow(I);I1=imresize(I,2,’nearest’);figureimshow(I1);I2=imresize(I,2,’bilinear’);figureimshow(I2);I3=imresiz…

    2022年5月11日
    32
  • 我花三个月看了200G×××教程,领悟了你的×××为什么不赚钱!

    我花三个月看了200G×××教程,领悟了你的×××为什么不赚钱!

    2022年4月3日
    61
  • 【计算机网络(微课版)】第4章 网络层与网络互连 课后习题及答案

    【计算机网络(微课版)】第4章 网络层与网络互连 课后习题及答案1.网络层向上提供的服务有哪两种?试比较其优缺点。解答:面向连接的虚电路服务和无连接的数据报服务。 对比的方面 虚电路服务 数据报服务 思路 可靠通信应当由网络来保证 可靠通信应当由用户主机来保证 连接的建立 必须有 …

    2022年10月10日
    0
  • 超级文本编辑器Sublime Text3「建议收藏」

    超级文本编辑器Sublime Text3「建议收藏」简介基础插件Package-Control中文乱码Ubuntu下输入中文输入法跟随光标在SublimeText中运行脚本解释器文件路径补全表格编辑语法高亮与着色代码匹配高亮BracketHighlighter代码布局Alignment代码对比sublimergeCompareSide-By-Side代码模板专用插件ForLua…

    2022年5月31日
    121
  • 共勉:作为一名程序员你应该怎么提一个高质量的问题?

    做一个积极的人编码、改bug、提升自己我有一个乐园,面向编程,春暖花开!又是一个周五,今天依旧不分享技术,这几天不知道怎么,感觉有点累,昨天十点就睡觉了,很久没有这么早睡觉了。现在已经是晚上10点了,我还在码字中,今天争取早点睡觉。今天整理一点关于如何提问的内容,因为最近一段时间有一些技术朋友加我好友,一起探讨一些技术问题。但是一些伙伴加我之后,提问的姿势可能有点不太正确,导致聊了很一会…

    2022年2月28日
    42
  • Kinect获取深度图和深度数据

    Kinect获取深度图和深度数据做关于深度信息处理的,正好实验室配备了kinect2代,就想着先用kinect获取深度信息来处理,之后换其他设备只要有深度信息就直接往后推进就行,不过网上教程虽然多,但是第一次总会栽进坑中,记录一波,下回重来的时候长个教训。配置,参考https://blog.csdn.net/qq_37059483/article/details/77855398#commentsedit因为现在很多版本…

    2022年5月16日
    32

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号