五大常用算法之三:贪心算法

一、基本概念:所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法没有固定的算法框架,算法设计的关键

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

一、基本概念:
 
     所谓贪心
算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
     贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。
    所以对所采用的贪心策略一定要仔细分析其是否满足无后效性。
 
二、贪心算法的基本思路:
    1.建立数学模型来描述问题。
    2.把求解的问题分成若干个子问题。
    3.对每一子问题求解,得到子问题的局部最优解。
    4.把子问题的解局部最优解合成原来解问题的一个解。
 
三、贪心算法适用的问题
      贪心策略适用的前提是:局部最优策略能导致产生全局最优解。
    实际上,贪心算法适用的情况很少。一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。
 
四、贪心算法的实现框架
    从问题的某一初始解出发;
    while (能朝给定总目标前进一步)
    { 
          利用可行的决策,求出可行解的一个解元素;
    }
    由所有解元素组合成问题的一个可行解;
  http://hovertree.com/
五、贪心策略的选择
     因为用贪心算法只能通过解局部最优解的策略来达到全局最优解,因此,一定要注意判断问题是否适合采用贪心算法策略,找到的解是否一定是问题的最优解。
 
六、例题分析
    下面是一个可以试用贪心算法解的题目,贪心解的确不错,可惜不是最优解。
    [背包问题]有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。
    要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
    物品 A B C D E F G
    重量 35 30 60 50 40 10 25
    价值 10 40 30 50 35 40 30
    分析:
    目标函数: ∑pi最大
    约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150)
    (1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
    (2)每次挑选所占重量最小的物品装入是否能得到最优解?
    (3)每次选取单位重量价值最大的物品,成为解本题的策略。
    值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。
    贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。
    可惜的是,它需要证明后才能真正运用到题目的算法中。
    一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
    对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
    (1)贪心策略:选取价值最大者。反例:
    W=30
    物品:A B C
    重量:28 12 12
    价值:30 20 20
    根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
    (2)贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
    (3)贪心策略:选取单位重量价值最大的物品。反例:
    W=30
    物品:A B C
    重量:28 20 10
    价值:28 20 10
    根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/120457.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 一步一步来:MQTT服务器搭建、MQTT客户端使用

    一步一步来:MQTT服务器搭建、MQTT客户端使用物联网应用如火如荼,本文就物联网应用中最受青睐的协议MQTT相关测试工具的使用进行简单说明。希望此文能给需要用到的朋友一些微薄的帮助……一、MQTT服务器(emqx)搭建1.下载服务器MQTTBroker从https://www.emqx.io/cn/mqtt/public-mqtt5-broker下载MQTTBroker。这里我使用的windows系统,下载对应版本工具:emqx-windows-v4.1-rc.2.zip下载好后,解压目…

    2022年6月5日
    50
  • MySQL删除表的三种方式[通俗易懂]

    MySQL删除表的三种方式

    2022年2月15日
    50
  • ps快捷键常用表格[通俗易懂]

    ps快捷键常用表格[通俗易懂]ps快捷键常用表,ps快捷键大全!天下武功,唯快不破!看完这篇PS快捷键使用指南,帮你掌握最常用的32个Photoshop快捷键!注:左上为Mac快捷键,右上为PC快捷键1、Command+T:自由变形该快捷键,主要对图层进行旋转、缩放等变形调整,同时可以拖动修改图层在画面中的位置,是极为常用的功能键。2、Command+J:复制图层对图层的复制,一般的操作是通过图层菜单…

    2022年9月29日
    2
  • python编写nc的思考

    0x00前言发现自己学习python已经有半个月了,也开发了自己的一些渗透的小脚本,但觉得还是不够,我个人觉得工具和脚本还有框架是个本质上的区别。脚本的话,不会考虑到其他的一些因素,例如报错和交互

    2021年12月11日
    57
  • 关于nginx中不用.htaccess 用在ningx.conf中配置的问题

    关于nginx中不用.htaccess 用在ningx.conf中配置的问题

    2021年10月13日
    44
  • 时滞微分方程求解_泛函微分方程内容设计

    时滞微分方程求解_泛函微分方程内容设计时滞微分方程(DDE)是当前时间的解与过去时间的解相关的常微分方程。该时滞可以固定不变、与时间相关、与状态相关或与导数相关。要开始积分,通常必须提供历史解,以便求解器可以获取初始积分点之前的时间的解。常时滞DDE具有常时滞的微分方程组的形式如下:y′(t)=f(t,y(t),y(t−τ1),…,y(t−τk)).y'(t)=f(t,y(t),y(t−τ_1),…,y(t−τ_k)).y′(t)=f(t,y(t),y(t−τ1​),…,y(t−τk​)).此处,t为自变量,y为因变量的列向量,

    2022年10月1日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号