h5py快速入门指南

h5py是Python语言用来操作HDF5的模块。下面的文章主要介绍h5py的快速使用入门,翻译自h5py的官方文档:http://docs.h5py.org/en/latest/quick.html。该翻译仅为个人学习h5py为目的,如有翻译不当之处,请速联系读者或提供其它好的翻译。安装使用Anaconda或者Miniconda:condainstallh5py用Enthou…

大家好,又见面了,我是你们的朋友全栈君。

h5py是Python语言用来操作HDF5的模块。下面的文章主要介绍h5py的快速入门指南,翻译自h5py的官方文档:http://docs.h5py.org/en/latest/quick.html 。该翻译仅为个人学习h5py为目的,如有翻译不当之处,请速联系笔者或提供正确的翻译,非常感谢!

安装

使用Anaconda或者Miniconda:

conda install h5py

Enthought Canopy,可以使用GUI安装包安装或用

enpkg h5py

安装。用pip或setup.py安装,请参考安装方式

核心概念

一个HDF5文件就是一个容器,用于储存两类对象:datasets,类似于数组的数据集合;groups,类似于文件夹的容器,可以储存datasets和其它groups。当使用h5py时,最基本的准则为:

groups类似于字典(dictionaries),dataset类似于Numpy中的数组(arrays)。

假设有人给你发送了一个HDF5文件, mytestfile.hdf5(如何创建这个文件,请参考:附录:创建一个文件).首先你需要做的就是打开这个文件用于读取数据:

>>> import h5py
>>> f = h5py.File('mytestfile.hdf5', 'r')

这个File对象是你的起点。那么这个文件中储存了什么呢?记住,h5py.File就像一个Python字典,因此我们可以查看这些键值,

>>> list(f.keys())
['mydataset']

根据我们的观察,这个文件中有一个dataset,即mydataset. 让我们把这个dataset作为Dataset对象来检验

>>> dset = f['mydataset']

我们得到的这个对象不是一个数组,而是一个HDF5 dataset. 就像Numpy中的数据那样,datasets有形状(shape)和数据类型(data type)

>>> dset.shape
(100,)
>>> dset.dtype
dtype('int32')

同时它们也支持数组风格的切片操作。下面是你如何完成这个文件中的一个dataset的读写的方法

>>> dset[...] = np.arange(100)
>>> dset[0]
0
>>> dset[10]
10
>>> dset[0:100:10]
array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])

想要更多参考,请前往File ObjectsDatasets.

附录:创建一个文件

此时此刻,你也许会好奇mytestdata.hdf5是如何创建的。当File对象初始化后,我们通过将模式(mode)设置为w来创建一个文件。其它模式(mode)为a(用于读、写、新建)和r+(用于读、写)。一个完整的File模式以及它们的含义的列表可参考File对象

>>> import h5py
>>> import numpy as np
>>> f = h5py.File("mytestfile.hdf5", "w")

File对象有几个看上去挺有趣的方法。其一为create_dataset,顾名思义,就是通过给定形状和数据类型来创建一个dataset

>>> dset = f.create_dataset("mydataset", (100,), dtype='i')

File对象是上下文管理器,因此,下面的代码也可运行

>>> import h5py
>>> import numpy as np
>>> with h5py.File("mytestfile.hdf5", "w") as f:
>>>     dset = f.create_dataset("mydataset", (100,), dtype='i')

Groups和分层结构

“HDF”是“Hierarchical Data Format”的缩写。每个HDF5文件中的对象都有一个名字(name),它们以类似于POSIX风格的分层结构存放,用/分隔符分隔

>>> dset.name
u'/mydataset'

在这个系统中“文件夹”(folders)被命名为groups. 我们创建的File对象本身也是一个group, 在这种情形下是根group(root group),名字为/:

>>> f.name
u'/'

创建一个子group(subgroup)可以通过一个巧妙的命令create_group来完成。但是,我们首先需要以读/写模式来打开文件

>>> f = h5py.File('mydataset.hdf5', 'r+')
>>> grp = f.create_group("subgroup")

所有Group对象,如同File对象一样,也有create_*方法:

>>> dset2 = grp.create_dataset("another_dataset", (50,), dtype='f')
>>> dset2.name
u'/subgroup/another_dataset'

顺便说一句,你不需要手动地创建所有的中间groups. 指定一个完整的路径同样可行

>>> dset3 = f.create_dataset('subgroup2/dataset_three', (10,), dtype='i')
>>> dset3.name
u'/subgroup2/dataset_three'

Groups支持大部分的Python字典风格的接口。你可以使用条目获取(item-retrieval)的语法来获取这个文件中的对象:

>>> dataset_three = f['subgroup2/dataset_three']

迭代一个group,就会产生它的成员的名字:

>>> for name in f:
...     print name
mydataset
subgroup
subgroup2

成员关系检测也可以通过使用名字来实现:

>>> "mydataset" in f
True
>>> "somethingelse" in f
False

你甚至可以使用完整的路径的名字:

>>> "subgroup/another_dataset" in f
True

它也有你熟悉的keys(), values(), items() 和iter() 的方法,以及get()方法。

因为迭代一个group只会产生它的直属成员,所以想要迭代一个完整的文件,可以使用Group的方法visit()和visititems(), 它们通过一个调用(callable)来实现:

>>> def printname(name):
...     print name
>>> f.visit(printname)
mydataset
subgroup
subgroup/another_dataset
subgroup2
subgroup2/dataset_three

想要更多参考,请前往Groups.

属性

HDF5的最好特征之一就是你可以在描述的数据后储存元数据(metadata)。所有的groups和datasets都支持几个数据位的附属命名,称为属性。(All groups and datasets support attached named bits of data called attributes.)

属性可以通过attrs这个代理对象来获取,这会再一次执行字典接口:

>>> dset.attrs['temperature'] = 99.5
>>> dset.attrs['temperature']
99.5
>>> 'temperature' in dset.attrs
True

想要更多参考,请前往Attributes.

注意:本人现已开通微信公众号: Python爬虫与算法(微信号为:easy_web_scrape), 欢迎大家关注哦~~

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/124968.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • JAVA的HelloWorld代码编写

    JAVA的HelloWorld代码编写第一步:新建一个文本文档第二步:打开代码输入代码(注意大小写,Java对大小写很敏感)第三步:更改后缀为.java(这样这个文档就会成为一个原文件)第四步:按住shift键,鼠标右键单击,点击“在此处打开Powershell”第五步:在Powershell窗口里输入JavacHelloworld.java,会出现一个class文档第六步:在Powershell窗口里输入JavacHelloworld会输出HelloWorld…

    2022年5月8日
    451
  • kafka的使用场景举例_kafka一般用来做什么

    kafka的使用场景举例_kafka一般用来做什么关于消息队列的使用一、消息队列概述消息队列中间件是分布式系统中重要的组件,主要解决应用解耦,异步消息,流量削锋等问题,实现高性能,高可用,可伸缩和最终一致性架构。目前使用较多的消息队列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ二、消息队列应用场景以下介绍消息队列在实际应用中常用的使用场景。异步处理,应用解耦,流量削锋和消息通讯四个场景。2.1异步…

    2022年10月15日
    0
  • idea打开maven项目 没有maven 窗口_maven主要是做什么

    idea打开maven项目 没有maven 窗口_maven主要是做什么打开项目不要以文件夹的方式打开,要点击pom文件打开项目,然后选择openasproject,然后导入项目就好了。

    2022年8月21日
    5
  • Qt图形视图体系结构示例解析(视图、拖拽、动画)

    本博的示例来自与QTExample:C:\Qt\Qt5.9.3\Examples\Qt-5.9.3\widgets\graphicsview\dragdroprobot将通过分析示例完成主要功能:

    2021年12月29日
    38
  • 批处理命令PUSHD和POPD[通俗易懂]

    批处理命令PUSHD和POPD[通俗易懂]随时随地阅读更多技术实战干货,获取项目源码、学习资料,请关注源代码社区公众号(ydmsq666)PUSHD:语法:PUSHD[path|..]Path指定当前目录更改后的目录。该命令支持相对路径。/?在命令提示符下显示帮助。…

    2022年6月15日
    53
  • 大数据Hbase 面试题「建议收藏」

    大数据Hbase 面试题「建议收藏」1.2hbase的特点是什么  (1)Hbase一个分布式的基于列式存储的数据库,基于Hadoop的hdfs存储,zookeeper进行管理。(2)Hbase适合存储半结构化或非结构化数据,对于数据结构字段不够确定或者杂乱无章很难按一个概念去抽取的数据。(3)Hbase为null的记录不会被存储.(4)基于的表包含rowkey,时间戳,和列族。新写入数

    2022年5月31日
    83

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号