一维卷积神经网络_卷积神经网络的基础知识「建议收藏」

一维卷积神经网络_卷积神经网络的基础知识「建议收藏」一维卷积一维卷积的输入是一个向量和一个卷积核,输出也是一个向量。通常状况下,输入向量长度远大于卷积核的长度。输出向量的长度取决于卷积操作的填充方案,等宽卷积的输出向量的和输入的向量长度相等。卷积核的长度通常是奇数,这是为了对称设计的。一个例子:一维卷积示例注意相乘的顺序是相反的,这是卷积的定义决定的。输出长度是7,卷积核长度是3,输出的长度是7-3+1=5。也就是说这里的卷积操作若输入长度是m…

大家好,又见面了,我是你们的朋友全栈君。


一维卷积

一维卷积的输入是一个向量和一个卷积核,输出也是一个向量。

通常状况下,输入向量长度远大于卷积核的长度。

输出向量的长度取决于卷积操作的填充方案,等宽卷积的输出向量的和输入的向量长度相等。

卷积核的长度通常是奇数,这是为了对称设计的。

一个例子:

aa8ab7ad8c0b13c98144248b8d96f5b0.png

一维卷积示例

注意相乘的顺序是相反的,这是卷积的定义决定的。

输出长度是7,卷积核长度是3,输出的长度是7-3+1 = 5。

也就是说这里的卷积操作若输入长度是m,卷积核长度是n,则输出长度是m-n+1。

这样的卷积就叫窄卷积。

等宽卷积就是在输入两边各填充(n-1)/2,最终输出长度是m+(n-1)/2*2-n+1 = m。

填充元素可以是0,也可以和边缘一样,也可以是镜像。

如上图例子中的输入向量,

  • 填充0后的输入为 012345670
  • 重复边缘填充后为:112345677
  • 镜像填充后为: 212345676

如下图,等宽卷积以及0填充,输入是1 2 3 4 5 6 7,输出是0 2 4 6 8 10 20

e96bf7a8d002a258fa649a1ddc5acf42.png

0填充-等宽卷积

换种风格说一下卷积步长的概念,如下图

67f73709cdc1ae04d29839f798aa694d.png

图a是步长为2,不填充;图b是步长为1,填充0的等宽卷积。

卷积步长为2,可以看成是步长为1状况下的输出隔两个取一个,当然这也就是步长的概念。默认情况下步长是1。使用等宽卷积时,步长为2的一维卷积会使得输出长度是输入的一半。

二维卷积

ba17d03d5f8def45ddccc775985d4210.png

无填充的二维卷积

如上图,二维的卷积,假设输入维度是mxm,卷积核大小是nxn,则无填充的输出大小是(m-n+1)x(m-n+1)。这和一维卷积是类似的。有填充的二维卷积如下图,

f674b2f2e9c5188a355e4c9bd909f08f.png

卷积的padding

卷积核的含义

600852b184013e82f066fd72ce950848.png

不同卷积核的作用:锐化,边缘等

在信号处理中,某些卷积核也被称为滤波器。如用滤波器对数字图像进行处理,获得目标图像。上图中有三个不同的卷积核,具有不同的作用,如锐化,去燥,提取边缘等。卷积神经网络中学习到的参数主要就是这些滤波器(也就是卷积核),在训练开始时,这些卷积核的值可能是0,或者随机数。训练结束时,这些卷积核就称为学习到的特征。

卷积层

ab629a66e05b61f80f39f902f2dfd0dc.png

全连接层和卷积层

如上图,全连接层有35个连接,5*7=35个不同参数。卷积层只有5*3=15个连接,但只有3个参数。因为在图b中,相同颜色的连接权重是相等的。这就称为权重共享。而3<7就包含了局部连接的含义,也就是说上边的神经元不是和下边的每一个神经元都有连接,而是它只与附近的几个连接。

池化层

用几个二维的例子来说明,概念非常简单。如这是2×2最大池化,

1e6f6b112ea5186140d42ba21d06da33.png

max-pooling

这是2×2平均池化

e08f2ec2d67bc5b6d66396bca04a1128.png

average-pooling

但要注意的是这里默认步长是(2,2),也就是横竖两个方向上的步长都是2。

讲道理的话,2×2最大池化步长是1的结果应该是如下图这样的,但好像不是很常用。

59c68425b651e07cdd6f43fd8c4047ff.png

步长为1的最大池化

池化层也有填充的概念,道理和卷积差不多。

激活层

激活层不改变特征图的大小。也就是说输入大小是mxm的,则输出也是mxm的。只是输入中每个元素x都变成f(x),f就是激活函数。激活函数是一个一元函数,如sigmoid函数是

4eac40a17a11913928cafcb987fff2ef.png

Sigmoid激活函数

或者ReLU函数

d34317b0e517bde11228a8f91931d258.png

ReLU激活函数

优化效果的途径

  • 增加网络层数
  • 增加神经元个数
  • 使用dropout
  • 使用不同的优化器 Adam,RMSprop等
  • 增加训练轮数
  • 批处理大小
  • 正则化

参考文献

https://nndl.github.io/ 《神经网络与深度学习》
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/125311.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • sm羞耻任务_羞耻驱动的发展

    sm羞耻任务_羞耻驱动的发展sm羞耻任务我一直渴望写出精巧的代码。在完成所有生产代码配对的日常工作中,我认为我们的质量很高。但是令人惊讶的是,当您独自编码时,您多么容易原谅自己并陷入不良习惯。配对时羞耻是品质背后的动力吗?我们有许多使用EasyMock编写的古老的单元测试;我们所有最近的单元测试都使用JMock。这笔小小的技术债务意味着,如果您要更改仅适用于EasyMock测试的代码,则首先必须决…

    2022年9月15日
    0
  • checkbox选中和不选中 jqu_jquery checkbox 选中不选中[通俗易懂]

    checkbox选中和不选中 jqu_jquery checkbox 选中不选中[通俗易懂]展开全部$(function(){//动态绑定默认状态//$(“#ck”).attr(“checked”,true)//选中//$(“#ck”).attr(“checked”,false)//未选中//点击判断选中还是未选中$(“#ck”).click(function(){if($(this).is(“:checked”)){alert(“选中”);}else{alert…

    2022年6月30日
    20
  • Shenzhen Catic Real Estate to raise RMB 2.2 bln

    Shenzhen Catic Real Estate to raise RMB 2.2 blnJun.5,2009ShenzhenChina-ShenzhenCaticRealEstateCoLtd<000043>announcedtodaythatitplanstoissueupto260millionsharestotwofirmsforatotalofRMB2.2billionorRMB8.94pe…

    2022年10月29日
    0
  • jQuery点击图片弹出放大特效下载

    效果体验:http://hovertree.com/texiao/jqimg/1/效果图:代码如下:源码下载:http://hovertree.com/h/bjaf/ljn1fwka.htm转自:

    2021年12月22日
    43
  • navicat for mysql11.0激活码_通用破解码

    navicat for mysql11.0激活码_通用破解码,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月16日
    142
  • python层次聚类分析_SPSS聚类分析:系统聚类分析[通俗易懂]

    python层次聚类分析_SPSS聚类分析:系统聚类分析[通俗易懂]一、概念:(分析-分类-系统聚类)系统聚类法常称为层次聚类法、分层聚类法,也是聚类分析中使用广泛的一种方法。它有两种类型,一是对研究对象本身进行分类,称为Q型聚类;另一是对研究对象的观察指标进行分类,称为R型聚类。同时根据聚类过程不同,又分为分解法和凝聚法。二、聚类方法(分析-分类-系统聚类-方法)1、聚类方法。可用的选项有组间联接、组内联接、最近邻元素、最远邻元素、质心聚类法、中位数聚类法和Wa…

    2022年10月17日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号