最小生成树的两种方法(Kruskal算法和Prim算法)[通俗易懂]

关于图的几个概念定义:连通图:在无向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该无向图为连通图。 强连通图:在有向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该有向图为强连通图。 连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权;权代表着连接连个顶点的代价,称这种连通图叫做连通网。 生成树:一个连通图的生成树是指一个连通子图,它含有图中…

大家好,又见面了,我是你们的朋友全栈君。

关于图的几个概念定义:

  • 连通图:在无向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该无向图为连通图。
  • 强连通图:在有向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该有向图为强连通图。
  • 连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权;权代表着连接连个顶点的代价,称这种连通图叫做连通网。
  • 生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边。一颗有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则必定成环。
  • 最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。 
    这里写图片描述

下面介绍两种求最小生成树算法

1.Kruskal算法

此算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。 
1. 把图中的所有边按代价从小到大排序; 
2. 把图中的n个顶点看成独立的n棵树组成的森林; 
3. 按权值从小到大选择边,所选的边连接的两个顶点ui,viui,vi,应属于两颗不同的树,则成为最小生成树的一条边,并将这两颗树合并作为一颗树。 
4. 重复(3),直到所有顶点都在一颗树内或者有n-1条边为止。

这里写图片描述

2.Prim算法

此算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中。算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点。

  1. 图的所有顶点集合为VV;初始令集合u={s},v=V−uu={s},v=V−u;
  2. 在两个集合u,vu,v能够组成的边中,选择一条代价最小的边(u0,v0)(u0,v0),加入到最小生成树中,并把v0v0并入到集合u中。
  3. 重复上述步骤,直到最小生成树有n-1条边或者n个顶点为止。

由于不断向集合u中加点,所以最小代价边必须同步更新;需要建立一个辅助数组closedge,用来维护集合v中每个顶点与集合u中最小代价边信息,:

struct
{
  char vertexData   //表示u中顶点信息
  UINT lowestcost   //最小代价
}closedge[vexCounts]

这里写图片描述


3.完整代码

/************************************************************************
CSDN 勿在浮沙筑高台 http://blog.csdn.net/luoshixian099算法导论--最小生成树(Prim、Kruskal)2016年7月14日
************************************************************************/
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
#define INFINITE 0xFFFFFFFF   
#define VertexData unsigned int  //顶点数据
#define UINT  unsigned int
#define vexCounts 6  //顶点数量
char vextex[] = { 'A', 'B', 'C', 'D', 'E', 'F' };
struct node 
{
    VertexData data;
    unsigned int lowestcost;
}closedge[vexCounts]; //Prim算法中的辅助信息
typedef struct 
{
    VertexData u;
    VertexData v;
    unsigned int cost;  //边的代价
}Arc;  //原始图的边信息
void AdjMatrix(unsigned int adjMat[][vexCounts])  //邻接矩阵表示法
{
    for (int i = 0; i < vexCounts; i++)   //初始化邻接矩阵
        for (int j = 0; j < vexCounts; j++)
        {
            adjMat[i][j] = INFINITE;
        }
    adjMat[0][1] = 6; adjMat[0][2] = 1; adjMat[0][3] = 5;
    adjMat[1][0] = 6; adjMat[1][2] = 5; adjMat[1][4] = 3;
    adjMat[2][0] = 1; adjMat[2][1] = 5; adjMat[2][3] = 5; adjMat[2][4] = 6; adjMat[2][5] = 4;
    adjMat[3][0] = 5; adjMat[3][2] = 5; adjMat[3][5] = 2;
    adjMat[4][1] = 3; adjMat[4][2] = 6; adjMat[4][5] = 6;
    adjMat[5][2] = 4; adjMat[5][3] = 2; adjMat[5][4] = 6;
}
int Minmum(struct node * closedge)  //返回最小代价边
{
    unsigned int min = INFINITE;
    int index = -1;
    for (int i = 0; i < vexCounts;i++)
    {
        if (closedge[i].lowestcost < min && closedge[i].lowestcost !=0)
        {
            min = closedge[i].lowestcost;
            index = i;
        }
    }
    return index;
}
void MiniSpanTree_Prim(unsigned int adjMat[][vexCounts], VertexData s)
{
    for (int i = 0; i < vexCounts;i++)
    {
        closedge[i].lowestcost = INFINITE;
    }      
    closedge[s].data = s;      //从顶点s开始
    closedge[s].lowestcost = 0;
    for (int i = 0; i < vexCounts;i++)  //初始化辅助数组
    {
        if (i != s)
        {
            closedge[i].data = s;
            closedge[i].lowestcost = adjMat[s][i];
        }
    }
    for (int e = 1; e <= vexCounts -1; e++)  //n-1条边时退出
    {
        int k = Minmum(closedge);  //选择最小代价边
        cout << vextex[closedge[k].data] << "--" << vextex[k] << endl;//加入到最小生成树
        closedge[k].lowestcost = 0; //代价置为0
        for (int i = 0; i < vexCounts;i++)  //更新v中顶点最小代价边信息
        {
            if ( adjMat[k][i] < closedge[i].lowestcost)
            {
                closedge[i].data = k;
                closedge[i].lowestcost = adjMat[k][i];
            }
        }
    }
}
void ReadArc(unsigned int  adjMat[][vexCounts],vector<Arc> &vertexArc) //保存图的边代价信息
{
    Arc * temp = NULL;
    for (unsigned int i = 0; i < vexCounts;i++)
    {
        for (unsigned int j = 0; j < i; j++)
        {
            if (adjMat[i][j]!=INFINITE)
            {
                temp = new Arc;
                temp->u = i;
                temp->v = j;
                temp->cost = adjMat[i][j];
                vertexArc.push_back(*temp);
            }
        }
    }
}
bool compare(Arc  A, Arc  B)
{
    return A.cost < B.cost ? true : false;
}
bool FindTree(VertexData u, VertexData v,vector<vector<VertexData> > &Tree)
{
    unsigned int index_u = INFINITE;
    unsigned int index_v = INFINITE;
    for (unsigned int i = 0; i < Tree.size();i++)  //检查u,v分别属于哪颗树
    {
        if (find(Tree[i].begin(), Tree[i].end(), u) != Tree[i].end())
            index_u = i;
        if (find(Tree[i].begin(), Tree[i].end(), v) != Tree[i].end())
            index_v = i;
    }

    if (index_u != index_v)   //u,v不在一颗树上,合并两颗树
    {
        for (unsigned int i = 0; i < Tree[index_v].size();i++)
        {
            Tree[index_u].push_back(Tree[index_v][i]);
        }
        Tree[index_v].clear();
        return true;
    }
    return false;
}
void MiniSpanTree_Kruskal(unsigned int adjMat[][vexCounts])
{
    vector<Arc> vertexArc;
    ReadArc(adjMat, vertexArc);//读取边信息
    sort(vertexArc.begin(), vertexArc.end(), compare);//边按从小到大排序
    vector<vector<VertexData> > Tree(vexCounts); //6棵独立树
    for (unsigned int i = 0; i < vexCounts; i++)
    {
        Tree[i].push_back(i);  //初始化6棵独立树的信息
    }
    for (unsigned int i = 0; i < vertexArc.size(); i++)//依次从小到大取最小代价边
    {
        VertexData u = vertexArc[i].u;  
        VertexData v = vertexArc[i].v;
        if (FindTree(u, v, Tree))//检查此边的两个顶点是否在一颗树内
        {
            cout << vextex[u] << "---" << vextex[v] << endl;//把此边加入到最小生成树中
        }   
    }
}

int main()
{
    unsigned int  adjMat[vexCounts][vexCounts] = { 0 };
    AdjMatrix(adjMat);   //邻接矩阵
    cout << "Prim :" << endl;
    MiniSpanTree_Prim(adjMat,0); //Prim算法,从顶点0开始.
    cout << "-------------" << endl << "Kruskal:" << endl;
    MiniSpanTree_Kruskal(adjMat);//Kruskal算法
    return 0;
}

最小生成树的两种方法(Kruskal算法和Prim算法)[通俗易懂]

转载:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51908175


Reference: 
数据结构–耿国华 
算法导论–第三版

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/125745.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 校园网网络规划与设计方案_一个简单校园网的设计与实现

    校园网网络规划与设计方案_一个简单校园网的设计与实现基于eNSP的千人校园/企业网络设计与规划,运用的管家技术如DHCP、SVIP、OSPF、RIP、NAT、Telnet、ACL、SNMP等关键技术,但是在本综合实验中简单网络管理协议SNMP就没有配置了

    2022年10月5日
    4
  • 广告平台精准推送系统解决方案架构「建议收藏」

    广告平台精准推送系统解决方案架构「建议收藏」以上就是广告精准推送的一个架构图。广告联盟是由多家广告提供商提供形成的一个组织,提供了多个平台的收集到的数据进行整合,数据的分析、清理,计算、统计等,提供向需要投放广告的广告主提供了一个投放系统平台。当用户进入门户网站或者app时,不同的用户看到的是不同的广告,广告联盟的系统计算出了不同用户或者用户群体的不同需求,通过广告推荐引擎系统和数据仓库中的统计数据以及用户的需求,展示给对应需求的用户观看,…

    2022年10月5日
    3
  • ubuntu安装wget命令_linux bash命令

    ubuntu安装wget命令_linux bash命令我们先安装linux系统比如centos7.1里面有的就没有wget下载工具。wget这个命令就不可以使用。我们使用yum-yinstallwgetyuminstallperl会出现:[root@localhost~]#yum-yinstallwgetLoadedplugins:fastestmirrorRepodataisoverweeksold.Instal…

    2022年10月16日
    4
  • 树莓派4b基础入门「建议收藏」

    树莓派4b基础入门「建议收藏」目录一、树莓派百科知识二、树莓派4B图解及配件选择三、如何烧录系统?四、树莓派开机连接五、常见警示标志和故障排除六、格式化TF卡七、系统备份与恢复八、无线WiFi上网配置九、系统汉化教程十、键盘布局设置十一、树莓派扩展分区十二、开启SSH的4种方法十三、开启VNC的3种方法十四、Windows远程桌面连接十五、获取IP和MAC地址十六、设置静态IP十七、常见问题一、树莓派百科知识树莓派(RaspberryPi)是一款基于ARM的微型电脑主板,旨为学生计算机编程教育而设计,其系统基于Linux,由注册于

    2022年6月11日
    124
  • PHP程序员如何突破成长瓶颈(php开发三到四年)

    PHP程序员如何突破成长瓶颈(php开发三到四年)

    2021年10月16日
    45
  • json字符串转换成对象有哪几种方法_jsonstring转对象

    json字符串转换成对象有哪几种方法_jsonstring转对象1.将json字符串转化为json对象a.方案一:jquery自带的$.parseJSON函数&amp;lt;script&amp;gt;varjsonstr=&quot;{\&quot;id\&quot;:\&quot;1\&quot;,\&quot;name\&quot;:\&quot;jack\&quot;}&quot;;varobj=$.parseJSON(jsonstr);&a

    2022年9月1日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号