全局平均池化层替代全连接层(battering ram)

转载的文章链接:为什么使用全局平均池化层?关于globalaveragepoolinghttps://blog.csdn.net/qq_23304241/article/details/80292859在卷积神经网络的初期,卷积层通过池化层(一般是最大池化)后总是要一个或n个全连接层,最后在softmax分类。其特征就是全连接层的参数超多,使模型本身变得非常臃肿。之后,有大牛在NIN(NetworkinNetwork)论文中提到了使用全局平局池化层代替全连接层的思路,以下是摘录的一.

大家好,又见面了,我是你们的朋友全栈君。

转载的文章链接:
为什么使用全局平均池化层?
关于 global average pooling
https://blog.csdn.net/qq_23304241/article/details/80292859

在卷积神经网络的初期,卷积层通过池化层(一般是 最大池化)后总是要一个或n个全连接层,最后在softmax分类。其特征就是全连接层的参数超多,使模型本身变得非常臃肿。
之后,有大牛在NIN(Network in Network)论文中提到了使用全局平局池化层代替全连接层的思路,以下是摘录的一部分资料:

global average poolilng。既然全连接网络可以使feature map的维度减少,进而输入到softmax,但是又会造成过拟合,是不是可以用pooling来代替全连接。
答案是肯定的,Network in Network工作使用GAP来取代了最后的全连接层,直接实现了降维,更重要的是极大地减少了网络的参数(CNN网络中占比最大的参数其实后面的全连接层)。Global average pooling的结构如下图所示:

在这里插入图片描述
由此就可以比较直观地说明了。这两者合二为一的过程我们可以探索到GAP的真正意义是:对整个网路在结构上做正则化防止过拟合。其直接剔除了全连接层中黑箱的特征,直接赋予了每个channel实际的内别意义。
实践证明其效果还是比较可观的,同时GAP可以实现任意图像大小的输入。但是值得我们注意的是,使用gap可能会造成收敛速度减慢。
但是,全局平均池化层比较全连接层,为什么会收敛速度变慢,它们对模型的训练有什么差异呢?我没有找到相关的文章的介绍。以下是发挥我自己的想象(很有可能是错误的)来理解的几个点:
1.全连接层结构的模型,对于训练学习的过程,可能压力更多的在全连接层。就是说,卷积的特征学习的低级一些,没有关系,全连接不断学习调整参数,一样能很好的分类。
此处是完全猜测,没有道理。
2.全局平均池化层代替全连接层的模型,学习训练的压力全部前导到卷积层。卷积的特征学习相较来说要更为”高级”一些。(因此收敛速度变慢?)
为什么这么想呢?我的理解是,全局平均池化较全连接层,应该会淡化不同特征间的相对位置的组合关系(“全局”的概念即如此)。因此,卷积训练出来的特征应该更加“高级”。
3. 以上的两个观点联合起来,可以推导出,全局平均池化层代替全连接层虽然有好处,但是不利于迁移学习。因为参数较为“固化”在卷积的诸层网络中。增加新的分类,那就意味着相当数量的卷积特征要做调整。而全连接层模型则可以更好的迁移学习,因为它的参数很大一部分调整在全连接层,迁移的时候卷积层可能也会调整,但是相对来讲要小的多了。
这3点完全是我个人的理解,希望有大牛留言批评指正。

global average pooling 与 average pooling 的差别就在 “global” 这一个字眼上。global与 local 在字面上都是用来形容 pooling 窗口区域的。 local 是取 feature map 的一个子区域求平均值,然后滑动这个子区域; global 显然就是对整个 feature map 求平均值了。
因此,global average pooling 的最后输出结果仍然是 10 个 feature map,而不是一个,只不过每个feature map 只剩下一个像素罢了。这个像素就是求得的平均值。 官方 prototxt 文件 里写了。网络进行到最后一个average pooling 层的时候,feature map 就剩下了 10 个,每个大小是 8 * 8。顺其自然地作者就把pooling 窗口设成了 8 个像素,意会为 global average pooling 。可见,global averagepooling 就是窗口放大到整个 feature map 的 average pooling 。

每个讲到全局池化的都会说GAP就是把avg pooling的窗口大小设置成feature map的大小,这虽然是正确的,但这并不是GAP内涵的全部。GAP的意义是对整个网络从结构上做正则化防止过拟合。既要参数少避免全连接带来的过拟合风险,又要能达到全连接一样的转换功能,怎么做呢?直接从feature map的通道上下手,如果我们最终有1000类,那么最后一层卷积输出的feature map就只有1000个channel,然后对这个feature map应用全局池化,输出长度为1000的向量,这就相当于剔除了全连接层黑箱子操作的特征,直接赋予了每个channel实际的类别意义。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/126433.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • seekg()/seekp()与tellg()/tellp()的用法详解

    seekg()/seekp()与tellg()/tellp()的用法详解对输入流操作:seekg()与tellg()对输出流操作:seekp()与tellp()下面以输入流函数为例介绍用法:seekg()是对输入文件定位,它有两个参数:第一个参数是偏移量,第二个参数是基地址。对于第一个参数,可以是正负数值,正的表示向后偏移,负的表示向前偏移。而第二个参数可以是:ios::beg:表示输入流的开始位置ios::cur:表示输入流的当前位置io

    2022年6月9日
    80
  • Ubuntu “Failed to fetch”错误的解决方法

    Ubuntu “Failed to fetch”错误的解决方法设置妥当DNS服务器即可.$sudovim/etc/resolv.conf修改DNS:nameserver8.8.8.8nameserver8.8.4.4然后重启网络服务:sudo

    2022年7月1日
    29
  • 简单了解Activity工作流引擎

    简单了解Activity工作流引擎一、什么是工作流以请假为例,现在大多数公司的请假流程是这样的员工打电话(或网聊)向上级提出请假申请——上级口头同意——上级将请假记录下来——月底将请假记录上交公司——公司将请假录入电脑采用工作流技术的公司的请假流程是这样的员工使用账户登录系统——点击请假——上级登录系统点击允许就这样,一个请假流程就结束了有人会问,那上级不用向公司提交请假记录?公司不用将记录录入电脑?答案…

    2022年7月11日
    23
  • Tomcat+Nginx配置以及Tomcat宕机后的问题

    Tomcat+Nginx配置以及Tomcat宕机后的问题公司最近在做一个spring项目服务器用的是tomcat,但是又怕性能与负载过大,这时候我们借用Nginx进行服务转发,好的现在先给张图看看Nginx主要起什么作用。不管是一个还是多个客户端发起请求,先通过Nginx代理器,Nginx代理器再将任务分发到各个服务器。这样一看是不是觉得很方便(妈妈再也不担心的的负载问题了)。好了不多说了,不喜欢写太多直接上配置。假如说我们有一个w

    2022年7月14日
    22
  • 父组件向子组件传值步骤

    父组件向子组件传值步骤父组件向子组件传值步骤:在这里先定义一下,相对本案例来说:App.vue是父组件,Second-module.vue是子组件。一、首先,值肯定是定义在父组件中的,供所有子组件共享。所以要在父组件的data中定义值:二、其次,父组件要和子组件有契合点:就是在父组件中调用、注册、引用子组件:调用:注册:引用:三、接下来,就可以在父组件和子组件链接的地方(即引用子组件的标签上),把父组件的值绑定给子组件:这里我绑定了两个值,一个是数组,一个是字符串。2018-03-3010:15:

    2022年6月1日
    90
  • linux重启网卡命令失败_centos7网卡重启

    linux重启网卡命令失败_centos7网卡重启  首先,命令ifconfig查看网卡状态,发现eth0网卡未启动。  然后,用命令ifupeth0启动网卡。   用命令ifdowneth0则是卸载网卡。转载于:https://www.cnblogs.com/dayboy2416/p/11231314.html…

    2022年9月22日
    7

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号