dcgan(bigbang)

来源:https://github.com/aymericdamien/TensorFlow-Examples#tutorials”””DeepConvolutionalGenerativeAdversarialNetwork(DCGAN).Usingdeepconvolutionalgenerativeadversarialnetworks(DCGAN)toge…

大家好,又见面了,我是你们的朋友全栈君。

来源:https://github.com/aymericdamien/TensorFlow-Examples#tutorials

""" Deep Convolutional Generative Adversarial Network (DCGAN).

Using deep convolutional generative adversarial networks (DCGAN) to generate
digit images from a noise distribution.

References:
    - Unsupervised representation learning with deep convolutional generative
    adversarial networks. A Radford, L Metz, S Chintala. arXiv:1511.06434.

Links:
    - [DCGAN Paper](https://arxiv.org/abs/1511.06434).
    - [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).

Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
"""

from __future__ import division, print_function, absolute_import

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

# Training Params
num_steps = 20000
batch_size = 32

# Network Params
image_dim = 784 # 28*28 pixels * 1 channel
gen_hidden_dim = 256
disc_hidden_dim = 256
noise_dim = 200 # Noise data points


# Generator Network
# Input: Noise, Output: Image
def generator(x, reuse=False):
    with tf.variable_scope('Generator', reuse=reuse):
        # TensorFlow Layers automatically create variables and calculate their
        # shape, based on the input.
        x = tf.layers.dense(x, units=6 * 6 * 128)
        x = tf.nn.tanh(x)
        # Reshape to a 4-D array of images: (batch, height, width, channels)
        # New shape: (batch, 6, 6, 128)
        x = tf.reshape(x, shape=[-1, 6, 6, 128])
        # Deconvolution, image shape: (batch, 14, 14, 64)
        x = tf.layers.conv2d_transpose(x, 64, 4, strides=2)
        # Deconvolution, image shape: (batch, 28, 28, 1)
        x = tf.layers.conv2d_transpose(x, 1, 2, strides=2)
        # Apply sigmoid to clip values between 0 and 1
        x = tf.nn.sigmoid(x)
        return x


# Discriminator Network
# Input: Image, Output: Prediction Real/Fake Image
def discriminator(x, reuse=False):
    with tf.variable_scope('Discriminator', reuse=reuse):
        # Typical convolutional neural network to classify images.
        x = tf.layers.conv2d(x, 64, 5)
        x = tf.nn.tanh(x)
        x = tf.layers.average_pooling2d(x, 2, 2)
        x = tf.layers.conv2d(x, 128, 5)
        x = tf.nn.tanh(x)
        x = tf.layers.average_pooling2d(x, 2, 2)
        x = tf.contrib.layers.flatten(x)
        x = tf.layers.dense(x, 1024)
        x = tf.nn.tanh(x)
        # Output 2 classes: Real and Fake images
        x = tf.layers.dense(x, 2)
    return x

# Build Networks
# Network Inputs
noise_input = tf.placeholder(tf.float32, shape=[None, noise_dim])
real_image_input = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])

# Build Generator Network
gen_sample = generator(noise_input)

# Build 2 Discriminator Networks (one from noise input, one from generated samples)
disc_real = discriminator(real_image_input)
disc_fake = discriminator(gen_sample, reuse=True)
disc_concat = tf.concat([disc_real, disc_fake], axis=0)

# Build the stacked generator/discriminator
stacked_gan = discriminator(gen_sample, reuse=True)

# Build Targets (real or fake images)
disc_target = tf.placeholder(tf.int32, shape=[None])
gen_target = tf.placeholder(tf.int32, shape=[None])

# Build Loss
disc_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    logits=disc_concat, labels=disc_target))
gen_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    logits=stacked_gan, labels=gen_target))

# Build Optimizers
optimizer_gen = tf.train.AdamOptimizer(learning_rate=0.001)
optimizer_disc = tf.train.AdamOptimizer(learning_rate=0.001)

# Training Variables for each optimizer
# By default in TensorFlow, all variables are updated by each optimizer, so we
# need to precise for each one of them the specific variables to update.
# Generator Network Variables
gen_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Generator')
# Discriminator Network Variables
disc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Discriminator')

# Create training operations
train_gen = optimizer_gen.minimize(gen_loss, var_list=gen_vars)
train_disc = optimizer_disc.minimize(disc_loss, var_list=disc_vars)

# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()

# Start training
with tf.Session() as sess:

    # Run the initializer
    sess.run(init)

    for i in range(1, num_steps+1):

        # Prepare Input Data
        # Get the next batch of MNIST data (only images are needed, not labels)
        batch_x, _ = mnist.train.next_batch(batch_size)
        batch_x = np.reshape(batch_x, newshape=[-1, 28, 28, 1])
        # Generate noise to feed to the generator
        z = np.random.uniform(-1., 1., size=[batch_size, noise_dim])

        # Prepare Targets (Real image: 1, Fake image: 0)
        # The first half of data fed to the generator are real images,
        # the other half are fake images (coming from the generator).
        batch_disc_y = np.concatenate(
            [np.ones([batch_size]), np.zeros([batch_size])], axis=0)
        # Generator tries to fool the discriminator, thus targets are 1.
        batch_gen_y = np.ones([batch_size])

        # Training
        feed_dict = {real_image_input: batch_x, noise_input: z,
                     disc_target: batch_disc_y, gen_target: batch_gen_y}
        _, _, gl, dl = sess.run([train_gen, train_disc, gen_loss, disc_loss],
                                feed_dict=feed_dict)
        if i % 100 == 0 or i == 1:
            print('Step %i: Generator Loss: %f, Discriminator Loss: %f' % (i, gl, dl))

    # Generate images from noise, using the generator network.
    f, a = plt.subplots(4, 10, figsize=(10, 4))
    for i in range(10):
        # Noise input.
        z = np.random.uniform(-1., 1., size=[4, noise_dim])
        g = sess.run(gen_sample, feed_dict={noise_input: z})
        for j in range(4):
            # Generate image from noise. Extend to 3 channels for matplot figure.
            img = np.reshape(np.repeat(g[j][:, :, np.newaxis], 3, axis=2),
                             newshape=(28, 28, 3))
            a[j][i].imshow(img)

    f.show()
    plt.draw()
    plt.waitforbuttonpress()

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128040.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • mysql如何批量添加数据_mysql如何批量insert数据

    mysql如何批量添加数据_mysql如何批量insert数据mysql批量insert数据的方法:1、循环插入;2、减少连接资源,拼接一条sql;3、使用存储过程;4、使用【MYSQLLOCAL_INFILE】。本教程操作环境:windows7系统、mysql8.0.22版,该方法适用于所有品牌电脑。mysql批量insert数据的方法:方法一:循环插入这个也是最普通的方式,如果数据量不是很大,可以使用,但是每次都要消耗连接数据库的资源。大致思维如下(我…

    2025年8月12日
    2
  • 标志位「建议收藏」

    标志位「建议收藏」例二:例子

    2022年6月30日
    21
  • python基础(3)列表list[通俗易懂]

    python基础(3)列表list[通俗易懂]列表列表特点:是一种序列结构,与元组不同,列表具有可变性,可以追加、插入、删除、替换列表中的元素新增元素appendappend添加一个对象,可以是任意类型a=['zhangsa

    2022年7月28日
    2
  • CheckSum 计算工具1——bin文件

    CheckSum 计算工具1——bin文件

    2021年8月27日
    611
  • Spring中bean的生命周期(最详细)

    Spring中bean的生命周期(最详细)SpringBean的生命周期是Spring面试热点问题。SpringBean的生命周期指的是从一个普通的Java类变成Bean的过程,深知Spring源码的人都知道这个给面试官讲的话大可讲30分钟以上,如果你不没有学习过Spring的源码,可能就知道Aware接口和调用init方法这样的生命周期,所以这个问题既考察对Spring的微观了解,又考察对Spring的宏观认识,想要答好并不容易!本文希望能够从源码角度入手,帮助面试者彻底搞定SpringBean的生命周期。首先你要明白一点,Sp

    2022年7月15日
    14
  • Android MD5加密

    Android MD5加密概述在网络中传输明文是一件非常危险的事情,所以通常将密码加密后传至服务器,由服务器保存密文在登录判定时只需比较密文是否相同即可。MD5加密是一种常用的加密算法,全称为“Message-DigestAlgorithm5”,即消息摘要算法,由MD2、MD3、MD4演变过来的,是一种单向加密算法,是一种不可逆的加密方式MD5优点:压缩性:任意长度的数据,算出的MD5值长度都是固定的。容易计算:从原数…

    2022年7月11日
    19

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号