dcgan(bigbang)

来源:https://github.com/aymericdamien/TensorFlow-Examples#tutorials”””DeepConvolutionalGenerativeAdversarialNetwork(DCGAN).Usingdeepconvolutionalgenerativeadversarialnetworks(DCGAN)toge…

大家好,又见面了,我是你们的朋友全栈君。

来源:https://github.com/aymericdamien/TensorFlow-Examples#tutorials

""" Deep Convolutional Generative Adversarial Network (DCGAN).

Using deep convolutional generative adversarial networks (DCGAN) to generate
digit images from a noise distribution.

References:
    - Unsupervised representation learning with deep convolutional generative
    adversarial networks. A Radford, L Metz, S Chintala. arXiv:1511.06434.

Links:
    - [DCGAN Paper](https://arxiv.org/abs/1511.06434).
    - [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).

Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
"""

from __future__ import division, print_function, absolute_import

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

# Training Params
num_steps = 20000
batch_size = 32

# Network Params
image_dim = 784 # 28*28 pixels * 1 channel
gen_hidden_dim = 256
disc_hidden_dim = 256
noise_dim = 200 # Noise data points


# Generator Network
# Input: Noise, Output: Image
def generator(x, reuse=False):
    with tf.variable_scope('Generator', reuse=reuse):
        # TensorFlow Layers automatically create variables and calculate their
        # shape, based on the input.
        x = tf.layers.dense(x, units=6 * 6 * 128)
        x = tf.nn.tanh(x)
        # Reshape to a 4-D array of images: (batch, height, width, channels)
        # New shape: (batch, 6, 6, 128)
        x = tf.reshape(x, shape=[-1, 6, 6, 128])
        # Deconvolution, image shape: (batch, 14, 14, 64)
        x = tf.layers.conv2d_transpose(x, 64, 4, strides=2)
        # Deconvolution, image shape: (batch, 28, 28, 1)
        x = tf.layers.conv2d_transpose(x, 1, 2, strides=2)
        # Apply sigmoid to clip values between 0 and 1
        x = tf.nn.sigmoid(x)
        return x


# Discriminator Network
# Input: Image, Output: Prediction Real/Fake Image
def discriminator(x, reuse=False):
    with tf.variable_scope('Discriminator', reuse=reuse):
        # Typical convolutional neural network to classify images.
        x = tf.layers.conv2d(x, 64, 5)
        x = tf.nn.tanh(x)
        x = tf.layers.average_pooling2d(x, 2, 2)
        x = tf.layers.conv2d(x, 128, 5)
        x = tf.nn.tanh(x)
        x = tf.layers.average_pooling2d(x, 2, 2)
        x = tf.contrib.layers.flatten(x)
        x = tf.layers.dense(x, 1024)
        x = tf.nn.tanh(x)
        # Output 2 classes: Real and Fake images
        x = tf.layers.dense(x, 2)
    return x

# Build Networks
# Network Inputs
noise_input = tf.placeholder(tf.float32, shape=[None, noise_dim])
real_image_input = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])

# Build Generator Network
gen_sample = generator(noise_input)

# Build 2 Discriminator Networks (one from noise input, one from generated samples)
disc_real = discriminator(real_image_input)
disc_fake = discriminator(gen_sample, reuse=True)
disc_concat = tf.concat([disc_real, disc_fake], axis=0)

# Build the stacked generator/discriminator
stacked_gan = discriminator(gen_sample, reuse=True)

# Build Targets (real or fake images)
disc_target = tf.placeholder(tf.int32, shape=[None])
gen_target = tf.placeholder(tf.int32, shape=[None])

# Build Loss
disc_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    logits=disc_concat, labels=disc_target))
gen_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    logits=stacked_gan, labels=gen_target))

# Build Optimizers
optimizer_gen = tf.train.AdamOptimizer(learning_rate=0.001)
optimizer_disc = tf.train.AdamOptimizer(learning_rate=0.001)

# Training Variables for each optimizer
# By default in TensorFlow, all variables are updated by each optimizer, so we
# need to precise for each one of them the specific variables to update.
# Generator Network Variables
gen_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Generator')
# Discriminator Network Variables
disc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Discriminator')

# Create training operations
train_gen = optimizer_gen.minimize(gen_loss, var_list=gen_vars)
train_disc = optimizer_disc.minimize(disc_loss, var_list=disc_vars)

# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()

# Start training
with tf.Session() as sess:

    # Run the initializer
    sess.run(init)

    for i in range(1, num_steps+1):

        # Prepare Input Data
        # Get the next batch of MNIST data (only images are needed, not labels)
        batch_x, _ = mnist.train.next_batch(batch_size)
        batch_x = np.reshape(batch_x, newshape=[-1, 28, 28, 1])
        # Generate noise to feed to the generator
        z = np.random.uniform(-1., 1., size=[batch_size, noise_dim])

        # Prepare Targets (Real image: 1, Fake image: 0)
        # The first half of data fed to the generator are real images,
        # the other half are fake images (coming from the generator).
        batch_disc_y = np.concatenate(
            [np.ones([batch_size]), np.zeros([batch_size])], axis=0)
        # Generator tries to fool the discriminator, thus targets are 1.
        batch_gen_y = np.ones([batch_size])

        # Training
        feed_dict = {real_image_input: batch_x, noise_input: z,
                     disc_target: batch_disc_y, gen_target: batch_gen_y}
        _, _, gl, dl = sess.run([train_gen, train_disc, gen_loss, disc_loss],
                                feed_dict=feed_dict)
        if i % 100 == 0 or i == 1:
            print('Step %i: Generator Loss: %f, Discriminator Loss: %f' % (i, gl, dl))

    # Generate images from noise, using the generator network.
    f, a = plt.subplots(4, 10, figsize=(10, 4))
    for i in range(10):
        # Noise input.
        z = np.random.uniform(-1., 1., size=[4, noise_dim])
        g = sess.run(gen_sample, feed_dict={noise_input: z})
        for j in range(4):
            # Generate image from noise. Extend to 3 channels for matplot figure.
            img = np.reshape(np.repeat(g[j][:, :, np.newaxis], 3, axis=2),
                             newshape=(28, 28, 3))
            a[j][i].imshow(img)

    f.show()
    plt.draw()
    plt.waitforbuttonpress()

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128040.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • css3文字导航鼠标悬停气泡动画特效源码下载

    效果体验:http://hovertree.com/texiao/css3/8/效果图:点击这里下载:http://hovertree.com/h/bjaf/8d5vmddq.htm更多特效:ht

    2021年12月22日
    42
  • Tomcat调优总结

    Tomcat调优总结Tomcat优化分为系统优化,Java虚拟机调优,Tomcat本身的优化。

    2022年7月18日
    22
  • python hashlib安装_Hashlib加密,内置函数,安装操作数据库「建议收藏」

    python hashlib安装_Hashlib加密,内置函数,安装操作数据库「建议收藏」hashlib模块的md5加密:md5同样的内容加密后是一样的md5加密后是不可逆的。即能加密,没办法解密。撞库:只是针对简单的,因为同样的内容加密后是一样的,难一点就不行了。登录密码:注册时候加密了保存,在登录时再加密,对比加密后内容一致即符合条件登录加盐:目的是增加复杂性。在该加密的内容上,再加上定好的一段儿内容,一同加密。在加上的这段内容,就是1importhashlib2#impor…

    2022年5月31日
    303
  • 数据挖掘十大经典算法个人总结

    数据挖掘十大经典算法个人总结数据挖掘十大经典算法个人总结这两年对数据挖掘相关知识研究运用的已经很多了,最近看了关于数据挖掘十大经典算法的文章。想对其进行一个总结,强化下自己对这些算法的理解。1.C4.5C4.5是基于ID3算法改进的决策树算法。相对于ID3,其伪代码:它具有的特点:1)用信息增益率来选择属性信息增益会偏向选择取值多的属性,而信息增益率除以H(v)来削弱

    2022年5月5日
    83
  • 9开头的两位数相乘速算法「建议收藏」

    9开头的两位数相乘速算法「建议收藏」

    2022年6月7日
    39
  • 详解BP神经网络

    BackPropagationNeuronNetWok  BP神经网络学习算法可以说是目前最成功的神经网络学习算法。显示任务中使用神经网络时,大多数是使用BP算法进行训练.  在我看来BP神经网络就是一个”万能的模型+误差修正函数“,每次根据训练得到的结果与预想结果进行误差分析,进而修改权值和阈值,一步一步得到能输出和预想结果一致的模型。举一个例子:比如某厂商生产一种产品,投放到市场之…

    2022年4月6日
    55

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号