多层感知机详解(如果增加多层感知机的隐藏层层数)

Principlesoftrainingmulti-layerneuralnetworkusingbackpropagation  Theprojectdescribesteachingprocessofmulti-layerneuralnetworkemploying backpropagation algorithm.Toillustrateth…

大家好,又见面了,我是你们的朋友全栈君。

Principles of training multi-layer neural network using backpropagation


 

The project describes teaching process of multi-layer neural network employing backpropagation algorithm. To illustrate this process the three layer neural network with two inputs and one output,which is shown in the picture below, is used: 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Each neuron is composed of two units. First unit adds products of weights coefficients and input signals. The second unit realise nonlinear function, called neuron activation function. Signal e is adder output signal, and y = f(e) is output signal of nonlinear element. Signal y is also output signal of neuron. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

To teach the neural network we need training data set. The training data set consists of input signals (x1 and x2 ) assigned with corresponding target (desired output) z. The network training is an iterative process. In each iteration weights coefficients of nodes are modified using new data from training data set. Modification is calculated using algorithm described below: Each teaching step starts with forcing both input signals from training set. After this stage we can determine output signals values for each neuron in each network layer. Pictures below illustrate how signal is propagating through the network, Symbols w(xm)n represent weights of connections between network input xm and neuron n in input layer. Symbols yn represents output signal of neuron n
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Propagation of signals through the hidden layer. Symbols wmn represent weights of connections between output of neuron m and input of neuron n in the next layer. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Propagation of signals through the output layer. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

In the next algorithm step the output signal of the network y is compared with the desired output value (the target), which is found in training data set. The difference is called error signal d of output layer neuron. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

It is impossible to compute error signal for internal neurons directly, because output values of these neurons are unknown. For many years the effective method for training multiplayer networks has been unknown. Only in the middle eighties the backpropagation algorithm has been worked out. The idea is to propagate error signal d (computed in single teaching step) back to all neurons, which output signals were input for discussed neuron. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

The weights’ coefficients wmn used to propagate errors back are equal to this used during computing output value. Only the direction of data flow is changed (signals are propagated from output to inputs one after the other). This technique is used for all network layers. If propagated errors came from few neurons they are added. The illustration is below: 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

When the error signal for each neuron is computed, the weights coefficients of each neuron input node may be modified. In formulas belowdf(e)/de represents derivative of neuron activation function (which weights are modified). 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Coefficient h affects network teaching speed. There are a few techniques to select this parameter. The first method is to start teaching process with large value of the parameter. While weights coefficients are being established the parameter is being decreased gradually. The second, more complicated, method starts teaching with small parameter value. During the teaching process the parameter is being increased when the teaching is advanced and then decreased again in the final stage. Starting teaching process with low parameter value enables to determine weights coefficients signs. 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128063.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • startActivityForResult用法

    startActivityForResult用法startActivityForResult用法startActivityForResult主要用来从FirstActivity跳转到SecondActivity然后返回FirstActivity并且获取从SecondActivity传回来的参数。使用方法:如下从ClockManagerActivity跳转到NewMapActivity并且传address值ClockManagerActiv…

    2022年7月11日
    21
  • httprunner3源码解读(3)client.py

    httprunner3源码解读(3)client.py源码目录结构ApiResponse这个类没啥好说的classApiResponse(Response):"""继承了requests模块中的Response类

    2022年7月31日
    4
  • 小米手机与魅族的PK战结果 说明了什么

    小米手机与魅族的PK战结果 说明了什么

    2022年1月29日
    361
  • vim查找选中的文本

    vim查找选中的文本在vim中按/查找的时候,不想每次都键盘输入查找内容,希望能够查找选中的文本。方法如下:第一步:使用y复制选中的文本(yank操作会将文本存入默认寄存器”)第二步:按/键(进入查找模式)第三步:按ctrl+r(访问寄存器)第四步:按”键(粘贴寄存器”的内容)参考资料:https://superuser.com/questions/41378/how-to-search-for-selected-text-in-vim…

    2022年6月18日
    70
  • input file 修改按钮名称[通俗易懂]

    input file 修改按钮名称[通俗易懂]解决方法:1、页面上放个隐藏的2、然后加上一个文本input(type=”text”)和一个按钮input(type=”button”)3、点按钮的时候调用的click选择文件4、在的onchange事件中把其值显示在文本input中5、注意把文本input设置成只读的,防止出错实例如下:

    2022年7月14日
    95
  • angularjs下载地址

    angularjs下载地址

    2021年9月15日
    63

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号