多层感知机详解(如果增加多层感知机的隐藏层层数)

Principlesoftrainingmulti-layerneuralnetworkusingbackpropagation  Theprojectdescribesteachingprocessofmulti-layerneuralnetworkemploying backpropagation algorithm.Toillustrateth…

大家好,又见面了,我是你们的朋友全栈君。

Principles of training multi-layer neural network using backpropagation


 

The project describes teaching process of multi-layer neural network employing backpropagation algorithm. To illustrate this process the three layer neural network with two inputs and one output,which is shown in the picture below, is used: 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Each neuron is composed of two units. First unit adds products of weights coefficients and input signals. The second unit realise nonlinear function, called neuron activation function. Signal e is adder output signal, and y = f(e) is output signal of nonlinear element. Signal y is also output signal of neuron. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

To teach the neural network we need training data set. The training data set consists of input signals (x1 and x2 ) assigned with corresponding target (desired output) z. The network training is an iterative process. In each iteration weights coefficients of nodes are modified using new data from training data set. Modification is calculated using algorithm described below: Each teaching step starts with forcing both input signals from training set. After this stage we can determine output signals values for each neuron in each network layer. Pictures below illustrate how signal is propagating through the network, Symbols w(xm)n represent weights of connections between network input xm and neuron n in input layer. Symbols yn represents output signal of neuron n
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Propagation of signals through the hidden layer. Symbols wmn represent weights of connections between output of neuron m and input of neuron n in the next layer. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Propagation of signals through the output layer. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

In the next algorithm step the output signal of the network y is compared with the desired output value (the target), which is found in training data set. The difference is called error signal d of output layer neuron. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

It is impossible to compute error signal for internal neurons directly, because output values of these neurons are unknown. For many years the effective method for training multiplayer networks has been unknown. Only in the middle eighties the backpropagation algorithm has been worked out. The idea is to propagate error signal d (computed in single teaching step) back to all neurons, which output signals were input for discussed neuron. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

The weights’ coefficients wmn used to propagate errors back are equal to this used during computing output value. Only the direction of data flow is changed (signals are propagated from output to inputs one after the other). This technique is used for all network layers. If propagated errors came from few neurons they are added. The illustration is below: 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

When the error signal for each neuron is computed, the weights coefficients of each neuron input node may be modified. In formulas belowdf(e)/de represents derivative of neuron activation function (which weights are modified). 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Coefficient h affects network teaching speed. There are a few techniques to select this parameter. The first method is to start teaching process with large value of the parameter. While weights coefficients are being established the parameter is being decreased gradually. The second, more complicated, method starts teaching with small parameter value. During the teaching process the parameter is being increased when the teaching is advanced and then decreased again in the final stage. Starting teaching process with low parameter value enables to determine weights coefficients signs. 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128063.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 群晖自带内网穿透_群晖内网解析

    群晖自带内网穿透_群晖内网解析1.打开docker程序,注册表搜索blichus找到blichus/wyc_linux_64双击下载2.下载完成在左侧映像找到刚才下载的镜像,双击配置启动3.点高级设置4.勾选启用自动重新启动5.网络勾选使用与dockerhost相同的网络6.环境选项卡点加号前边大写TOKEN(务必大写一致)后边值填写你的隧道token7.最后点应用完成就可以了,每次在网页端修改隧道之后要记得重…

    2022年8月31日
    10
  • Socker编程之TCP

    Socker编程之TCP一:TCP介绍TCP协议,传输控制协议(英语:TransmissionControlProtocol,缩写为TCP)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC793定义。TCP通信需要经过创建连接、数据传送、终止连接三个步骤。TCP通信模型中,在通信开始之前,一定要先建立相关的链接,才能发送数据,类似于生活中,”打电话””二:TCP特…

    2025年6月30日
    5
  • 增加流水线段数不能提高cpu频率_cpu流水线是什么意思

    增加流水线段数不能提高cpu频率_cpu流水线是什么意思关注、星标公众号,不错过精彩内容素材来源:网络编辑整理:strongerHuang为什么有些CPU的主频更低,但运算效率却更高呢?比如:51单片机30M主频,STM32单片机20M主频,…

    2022年8月20日
    10
  • eclipse运行java程序_如何在Eclipse中运行简单的Java程序?「建议收藏」

    eclipse运行java程序_如何在Eclipse中运行简单的Java程序?「建议收藏」正如您可能从问题本身可以理解的那样,我是Java的新手。我进行了一个练习,编写一个Java程序,该程序接收一个字符,将其打印并输出Unicode表中的下一个字符。现在,我有解决此问题的方法:publicstaticvoidmain(String[]args){charc=args[0].charAt(0);charc1=(char)(c+1);System.out.prin…

    2022年7月8日
    21
  • Java 递归、DFS、回溯

    Java 递归、DFS、回溯DFS/回溯算法如果某问题的解可以由多个步骤得到,而每个步骤都有若干种选择(这些候选方案集可能会依赖之前做出的选择),且可以用递归枚举法实现,则它的工作方式可以用解答树来描述。全排列问题输出数字1~N所能组成的所有全排列publicclassA{/***全排列**@paramargs*/staticVector<Integer>vector=newVector<>();s

    2022年7月8日
    19
  • spss相关系数及其检验_等级相关系数法检验

    spss相关系数及其检验_等级相关系数法检验这里写目录标题SPSS的异方差检验(等级相关系数检验法)数据来源普通最小二乘法求回归方程功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导…

    2025年8月2日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号