多层感知机详解(如果增加多层感知机的隐藏层层数)

Principlesoftrainingmulti-layerneuralnetworkusingbackpropagation  Theprojectdescribesteachingprocessofmulti-layerneuralnetworkemploying backpropagation algorithm.Toillustrateth…

大家好,又见面了,我是你们的朋友全栈君。

Principles of training multi-layer neural network using backpropagation


 

The project describes teaching process of multi-layer neural network employing backpropagation algorithm. To illustrate this process the three layer neural network with two inputs and one output,which is shown in the picture below, is used: 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Each neuron is composed of two units. First unit adds products of weights coefficients and input signals. The second unit realise nonlinear function, called neuron activation function. Signal e is adder output signal, and y = f(e) is output signal of nonlinear element. Signal y is also output signal of neuron. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

To teach the neural network we need training data set. The training data set consists of input signals (x1 and x2 ) assigned with corresponding target (desired output) z. The network training is an iterative process. In each iteration weights coefficients of nodes are modified using new data from training data set. Modification is calculated using algorithm described below: Each teaching step starts with forcing both input signals from training set. After this stage we can determine output signals values for each neuron in each network layer. Pictures below illustrate how signal is propagating through the network, Symbols w(xm)n represent weights of connections between network input xm and neuron n in input layer. Symbols yn represents output signal of neuron n
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Propagation of signals through the hidden layer. Symbols wmn represent weights of connections between output of neuron m and input of neuron n in the next layer. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Propagation of signals through the output layer. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

In the next algorithm step the output signal of the network y is compared with the desired output value (the target), which is found in training data set. The difference is called error signal d of output layer neuron. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

It is impossible to compute error signal for internal neurons directly, because output values of these neurons are unknown. For many years the effective method for training multiplayer networks has been unknown. Only in the middle eighties the backpropagation algorithm has been worked out. The idea is to propagate error signal d (computed in single teaching step) back to all neurons, which output signals were input for discussed neuron. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

The weights’ coefficients wmn used to propagate errors back are equal to this used during computing output value. Only the direction of data flow is changed (signals are propagated from output to inputs one after the other). This technique is used for all network layers. If propagated errors came from few neurons they are added. The illustration is below: 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

When the error signal for each neuron is computed, the weights coefficients of each neuron input node may be modified. In formulas belowdf(e)/de represents derivative of neuron activation function (which weights are modified). 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Coefficient h affects network teaching speed. There are a few techniques to select this parameter. The first method is to start teaching process with large value of the parameter. While weights coefficients are being established the parameter is being decreased gradually. The second, more complicated, method starts teaching with small parameter value. During the teaching process the parameter is being increased when the teaching is advanced and then decreased again in the final stage. Starting teaching process with low parameter value enables to determine weights coefficients signs. 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128063.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • InstallShield 2010打包

    InstallShield 2010打包打包安装文件。本例子在VS2010下完成,对应的InstallShield2010版的打包程序。如果已安装InstallShield2010,会在VS2010中有体现。新建项目,在已安装的模板中选

    2022年7月2日
    23
  • C语言学习——sprintf函数详细解释及其用法

    C语言学习——sprintf函数详细解释及其用法sprintf指的是字符串格式化命令,函数声明为 int sprintf(char *string, char *format [,argument,…]);,主要功能是把格式化的数据写入某个字符串中,即发送格式化输出到 string 所指向的字符串。sprintf 是个变参函数。使用sprintf 对于写入buffer的字符数是没有限制的,这就存在了buffer溢出的可能性。解决这个问题,可以…

    2022年8月18日
    3
  • JS判断值是否是数字

    JS判断值是否是数字随时随地阅读更多技术实战干货,获取项目源码、学习资料,请关注源代码社区公众号(ydmsq666)、博主微信(guyun297890152)、QQ技术交流群(183198395)。from:https://www.cnblogs.com/maxm/p/6743989.html1.使用isNaN()函数isNaN()的缺点就在于null、空格以及空串会被按照0来处理NaN:No…

    2022年6月16日
    19
  • 固态硬盘界的”瑞士军刀”:有这两款工具箱软件才安心

    固态硬盘界的”瑞士军刀”:有这两款工具箱软件才安心固态硬盘每天产生了多少写入量?剩余寿命还能用几年?如何你非常关心这些普通玩家经常忽视的问题,专业的固态硬盘工具箱软件将是必备的。 HardDiskSentinel能够同时支持机械和固态硬盘,依据问题扇区和接口CRC错误、Trim功能开启状况,给出硬盘的健康和性能状态,以及预计的可用剩余寿命。 新版的HardDiskSentinel还能根据硬盘型号识别出固态硬盘所用的…

    2022年6月7日
    54
  • mac如何杀进程_Mac结束进程

    mac如何杀进程_Mac结束进程比如我们想要杀死端口9999对应的进程首先,查看端口9999的占用情况lsof-itcp:9999其次,执行kill-9pid,这里我的pid=9760kill-99760

    2022年9月5日
    6
  • 让Ubuntu可以压缩/解压缩RAR文件

    让Ubuntu可以压缩/解压缩RAR文件

    2021年6月5日
    107

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号