多层感知机详解(如果增加多层感知机的隐藏层层数)

Principlesoftrainingmulti-layerneuralnetworkusingbackpropagation  Theprojectdescribesteachingprocessofmulti-layerneuralnetworkemploying backpropagation algorithm.Toillustrateth…

大家好,又见面了,我是你们的朋友全栈君。

Principles of training multi-layer neural network using backpropagation


 

The project describes teaching process of multi-layer neural network employing backpropagation algorithm. To illustrate this process the three layer neural network with two inputs and one output,which is shown in the picture below, is used: 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Each neuron is composed of two units. First unit adds products of weights coefficients and input signals. The second unit realise nonlinear function, called neuron activation function. Signal e is adder output signal, and y = f(e) is output signal of nonlinear element. Signal y is also output signal of neuron. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

To teach the neural network we need training data set. The training data set consists of input signals (x1 and x2 ) assigned with corresponding target (desired output) z. The network training is an iterative process. In each iteration weights coefficients of nodes are modified using new data from training data set. Modification is calculated using algorithm described below: Each teaching step starts with forcing both input signals from training set. After this stage we can determine output signals values for each neuron in each network layer. Pictures below illustrate how signal is propagating through the network, Symbols w(xm)n represent weights of connections between network input xm and neuron n in input layer. Symbols yn represents output signal of neuron n
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Propagation of signals through the hidden layer. Symbols wmn represent weights of connections between output of neuron m and input of neuron n in the next layer. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Propagation of signals through the output layer. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

In the next algorithm step the output signal of the network y is compared with the desired output value (the target), which is found in training data set. The difference is called error signal d of output layer neuron. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

It is impossible to compute error signal for internal neurons directly, because output values of these neurons are unknown. For many years the effective method for training multiplayer networks has been unknown. Only in the middle eighties the backpropagation algorithm has been worked out. The idea is to propagate error signal d (computed in single teaching step) back to all neurons, which output signals were input for discussed neuron. 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

The weights’ coefficients wmn used to propagate errors back are equal to this used during computing output value. Only the direction of data flow is changed (signals are propagated from output to inputs one after the other). This technique is used for all network layers. If propagated errors came from few neurons they are added. The illustration is below: 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

When the error signal for each neuron is computed, the weights coefficients of each neuron input node may be modified. In formulas belowdf(e)/de represents derivative of neuron activation function (which weights are modified). 
 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

 

多层感知机详解(如果增加多层感知机的隐藏层层数)

Coefficient h affects network teaching speed. There are a few techniques to select this parameter. The first method is to start teaching process with large value of the parameter. While weights coefficients are being established the parameter is being decreased gradually. The second, more complicated, method starts teaching with small parameter value. During the teaching process the parameter is being increased when the teaching is advanced and then decreased again in the final stage. Starting teaching process with low parameter value enables to determine weights coefficients signs. 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128063.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 填充图画图片_脂肪填充失败

    填充图画图片_脂肪填充失败图片处理-填充图片-numpy.padnp.pad()常用于深度学习中的数据预处理(例如用于图片处理中填充图片),可以将numpy数组按指定的方法填充成指定的形状。对一维数组的填充importnumpyasnparr1D=np.array([1,1,2,2,3,4])”’不同的填充方法”’print(‘constant:’+str…

    2022年8月13日
    4
  • redis memcache 区别_缓存redis的五种方式

    redis memcache 区别_缓存redis的五种方式Redis的作者SalvatoreSanfilippo曾经对这两种基于内存的数据存储系统进行过比较:1.Redis支持服务器端的数据操作:Redis相比Memcached来说,拥有更多的数据结构和并支持更丰富的数据操作,通常在Memcached里,你需要将数据拿到客户端来进行类似的修改再set回去。这大大增加了网络IO的次数和数据体积。在Redis中,这些复杂的操作通常和一般的GET/SET一…

    2025年5月22日
    2
  • wordpress自定义搜索

    wordpress自定义搜索默认下,wordpress的搜索范围只有文章的标题和文章内容,无法搜索自定义字段中的内容,现实情况是很多情况下我们可能会要搜索自定义字段中的内容。如果只是想搜索一到两个自定义字段中的内容,可以使用wordpress的内置函数meta_query变量。12345678910111213141516171

    2022年7月14日
    72
  • Altium Designer — 精心总结

    Altium Designer — 精心总结以前是使用DXP2004来画图的,后来转行。想来已经有一年半的时间没有画过了。突然转到AD,有些不适应。用了下发觉很多功能确实比DXP要来的强大。花了不少时间和精力,将之前的一些经验技巧,进行整理总结。希望这篇文章,可以让人少走线些弯路。让初学者可以快速入门。好了,言归正传,开始启程!首先下载AD16: AltiumDesigner16.0.6Build282安装教程:Alti

    2022年7月13日
    23
  • jQuery网页版五子棋小游戏源码下载

    体验效果:http://hovertree.com/texiao/game/4/网页五子棋源代码:jquery五子棋游戏-黑子白子先手后手开始胜率:100%更多:http://www.cnblogs

    2021年12月21日
    40
  • 无需Visual Studio,5容易的 – 分为报告

    无需Visual Studio,5容易的 – 分为报告

    2022年1月5日
    52

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号