对L1正则化和L2正则化的理解[通俗易懂]

一、奥卡姆剃刀(Occam’srazor)原理:     在所有可能选择的模型中,我们应选择能够很好的解释数据,并且十分简单的模型。从贝叶斯的角度来看,正则项对应于模型的先验概率。可以假设复杂模型有较小的先验概率,简单模型有较大的先验概率。  二、正则化项     2.1、什么是正则化?   正则化是结构风险最小化策略的实现,在经验风险上加一个正则项或罚项,正则项一共有两种L1…

大家好,又见面了,我是你们的朋友全栈君。

一、 奥卡姆剃刀(Occam’s razor)原理:

         在所有可能选择的模型中,我们应选择能够很好的解释数据,并且十分简单的模型。从贝叶斯的角度来看,正则项对应于模型的先验概率。可以假设复杂模型有较小的先验概率,简单模型有较大的先验概率。   

二、正则化项

     2.1、什么是正则化?

      正则化是结构风险最小化策略的实现,在经验风险上加一个正则项或罚项,正则项一共有两种L1正则化和L2正则化,或者L1范数和L2范数。对于线性回归模型,使用L1正则化的模型叫做Lasso回归;使用L2正则化的模型叫做Ridge回归(岭回归)

     2.2、正则化项和模型复杂度之间的关系

        正则化项一般是模型复杂度的单调递增的函数,模型越复杂,正则化值越大。

    一般来说,监督学习可以看做最小化下面的目标函数:

      对L1正则化和L2正则化的理解[通俗易懂]

       上式中的第1项为经验风险,即模型f(x)关于训练数据集的平均损失;第2项为正则化项,去约束我们的模型更加简单

三、L1范数

     3.1概念: L1范数是指向量中各个元素绝对值之和。

对L1正则化和L2正则化的理解[通俗易懂]

     3.2 为什么L1范数会使权值稀疏?

        任何的正则化算子,如果他在Wi=0的地方不可微,并且可以分解为“求和” 的形式,那么这个正则化算子就可以实现稀疏。

   3.3 参数稀疏有什么好处?

    (1)特征选择(Feature Selection)

      参数稀疏规则化能够实现特征的自动选择,在特征工程的过程中,一般来说,xi的大部分元素(特征)都和其标签yi没有关系的。我们在最小化目标函数的时候,考虑了这些无关特征,虽然可以获得最小的训练误差,但是对于新的样本时,这些没用的信息反而被考虑,干扰了对样本的预测。稀疏规则化将这些没用的特征的权重置为0,去掉这些没用的特征。

     (2)可解释性

     将无关特征置为0,模型更容易解释。例如:患某种病的概率为y,我们收集到的数据x是1000维的,我们的任务是寻找这1000种因素是如何影响患上这种病的概率。假设,我们有一个回归模型:y=w1*x1+w2*x2+…+w1000*x1000+b,通过学习,我们最后学习到w*只有很少的非零元素。例如只有5个非零的w*,那么这5个w*含有患上这种病的关键信息。也就是说,是否患上这种病和这5个特征相关,那事情变得容易处理多了。

四、L2范数

     4.1 概念:L2范数是指向量各元素的平方和然后再求平方根。

对L1正则化和L2正则化的理解[通俗易懂]

        正则化项可以取不同的形式。对于回归问题中,损失函数是平方损失,正则化项为参数向量L2的范数。

     4.2 为什么L2范数可以防止过拟合?

        左一:欠拟合;中间:正常拟合;右侧:过拟合

对L1正则化和L2正则化的理解[通俗易懂]

线性回归拟合图

       让L2范数的正则项||W||2最小,可以使得W的每个元素都很小,都接近于0。(L1范数让W等于0),而越小的参数说明模型越简单,越简单的模型越不容易产生过拟合的现象。(结合上图线性回归拟合图可知,限制了某些参数很小,其实也就限制了多项式的某些分量的影响很小,这也就相当于减少了变量的个数)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/128182.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 关于write()和fsync()

    关于write()和fsync()writessize_twrite(intfd,constvoid*buf,size_tcount);将数据写到文件中.注意,如果文件是保存在硬盘中,write()函数调用返回之后,并不表示数据已经写入到硬盘中,这时如果掉电,数据可能会丢失.fsyncintfsync(intfd);程序调用本函数,通知内核把数据写到硬盘(file)中.比如,…

    2022年5月31日
    51
  • 温度传感器 JUMO芯片铂电阻各型号优点

    温度传感器JUMO芯片铂电阻德国久茂Jumo品牌介绍:德国JUMOGmbH&KG公司成立于1948年,位于德国中部城市Fulda。公司经过六十多年的发展,已经成为欧洲著名的仪表制造厂商,公司主要致力于生产高质量的传感器、变送器及控制器,可提供工业温度、压力、湿度、液位、流量、pH值、电导率、氧化还原值的测量、控制及记录产品。坦泼秋尔(TPQE):德国久茂Jumo中国区唯…

    2022年4月6日
    41
  • SSH整合JPA+Mysql

    SSH整合JPA+Mysql

    2021年9月26日
    43
  • 木马产业链 安全新忧患

    木马产业链 安全新忧患

    2022年3月11日
    39
  • 一只救助犬的最后遗言

    一只救助犬的最后遗言这是刚在雅虎上看到的一篇文章,内容讲述一只日本救助犬的真实而动人的故事,阅后不得不让人感叹人与动物之间的感情和谐与真挚。实话说,其令我这个大男人哽咽难语。想想现今,在这个人与人之间充满了不信任,在这

    2022年7月4日
    31
  • navicat premium 15 mac 激活码-激活码分享

    (navicat premium 15 mac 激活码)最近有小伙伴私信我,问我这边有没有免费的intellijIdea的激活码,然后我将全栈君台教程分享给他了。激活成功之后他一直表示感谢,哈哈~IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.net/100143.html…

    2022年3月30日
    103

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号