realsense深度图像保存方法

realsense深度图像保存方法一般使用realsense时会保存视频序列,当保存深度图像时,需要注意保存的图像矩阵的格式,不然可能造成深度值的丢失。在众多图像库中,一般会使用opencv中的imwrite()函数进行深度图像的保存。一般深度图像中深度值的单位是mm,因此一般使用np.uint16作为最终数据格式保存。例子:importnumpyasnpimportcv2deffun1(…

大家好,又见面了,我是你们的朋友全栈君。

  1. 一般使用realsense时会保存视频序列,当保存深度图像时,需要注意保存的图像矩阵的格式,不然可能造成深度值的丢失。

  2. 在众多图像库中,一般会使用opencv中的imwrite() 函数进行深度图像的保存。

  3. 一般深度图像中深度值的单位是mm,因此一般使用np.uint16作为最终数据格式保存。

例子:

import numpy as np
import cv2

def fun1(im):
	im=np.asarray(im,np.float32)
	return im
def fun2(im):
	im=np.asarray(im,np.uint16)
	return im
if __name__ == '__main__':
	#set a depth map using np.random
	im=np.random.randint(100,800,size=(96,96))
	#1. float save
	im1=fun1(im)
	cv2.imwrite('float_saved.png',im1)
	im2=fun2(im)
	cv2.imwrite('uint_saved.png',im2)
	

重新读取保存的图像:

import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
def load_image(filename):
	im=Image.open(filename)
	return im
if __name__ == '__main__':
	im1=load_image('float_saved.png')
	im2=load_image('uint_saved.png')
	plt.subplot(121)
	plt.imshow(im1)
	plt.subplot(122)
	plt.imshow(im2)
	plt.show()

结果显示:
左边是float,右边是uint16保存方法,左边数据出现了数据压缩,被压缩在0-255之间,而右边值正常。
在这里插入图片描述
附上完整的realsense采集深度图像的代码

import pyrealsense2 as rs
import numpy as np
import cv2


class realsense_im(object):
    def __init__(self,image_size=(640,480)):
        self.pipeline = rs.pipeline()
        config = rs.config()
        config.enable_stream(rs.stream.depth, image_size[0], image_size[1], rs.format.z16, 30)
        config.enable_stream(rs.stream.color, image_size[0], image_size[1], rs.format.bgr8, 30)
        self.profile = self.pipeline.start(config)

    def __get_depth_scale(self):
        depth_sensor = self.profile.get_device().first_depth_sensor()

        depth_scale = depth_sensor.get_depth_scale()

        return depth_scale

    def get_image(self):

        frames = self.pipeline.wait_for_frames()
        depth_frame = frames.get_depth_frame()
        color_frame = frames.get_color_frame()
        depth_image = np.asarray(depth_frame.get_data(), dtype=np.float32)
        color_image = np.asarray(color_frame.get_data(), dtype=np.uint8)
        color_image_pad = np.pad(color_image, ((20, 0), (0, 0), (0, 0)), "edge")
        depth_map_end = depth_image * self.__get_depth_scale() * 1000
        return depth_map_end,color_image

    def process_end(self):
        self.pipeline.stop()

rs_t=realsense_im()

i=0
try:
    while True:

        depth_map,rgb_map=rs_t.get_image()
        print  rgb_map.shape
        cv2.imwrite('./examples/savefig/rgb/image_r_{}.png'.format(str(i).zfill(5)), rgb_map)
        i+=1

        cv2.imwrite('./examples/savefig/depth/Tbimage_d_{}.png'.format(str(0).zfill(5)), np.asarray(depth_map,np.uint16))

        cv2.namedWindow('RGB Example', cv2.WINDOW_AUTOSIZE)
        cv2.imshow('RGB Example', rgb_map)
        key = cv2.waitKey(1)
        # Press esc or 'q' to close the image window
        if key & 0xFF == ord('q') or key == 27:
            cv2.destroyAllWindows()
            break

finally:
    pass


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/129863.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • tophat使用_tophat是什么意思

    tophat使用_tophat是什么意思概述:tophat是以bowtie2为核心的一款比对软件。tophat工作分两步:1.将reads用bowtie比对到参考基因组上。2.将unmapped-reads打断成更小的fragment

    2022年8月3日
    6
  • linux抓包-tcpdump

    linux抓包-tcpdump文章目录1.tcpdump简介2.tcpdump参数3.tcpdump过滤器4.tcpdump常用操作1.tcpdump简介tcpdump是linux平台的抓包工具,可以抓取TCP/IP协议的数据包,网络协议,主机,端口,还提供and,or,not等逻辑语句过滤信息。2.tcpdump参数tcpdump帮助查看tcpdump-h,mantcpdump[root@master~]#tcpdump-htcpdumpversion4.9.2libpcapversion1.5.3

    2022年6月17日
    34
  • python中的int函数_python int()

    python中的int函数_python int()python中Int8Int16Int32Int64floatuint8Int8,占1个字节.Int16,占2个字节.Int32,占4个字节.Int64,占8个字节.float类型取值范围:-1到1或者0到1uint8类型取值范围:0到255(通常用于RGB图像中)#转换img.astype(‘uint8’)…

    2022年8月15日
    8
  • 【原创】关于自身表的外键触发器实现

    【原创】关于自身表的外键触发器实现

    2021年8月18日
    75
  • 睿智的目标检测20——利用mAP计算目标检测精确度「建议收藏」

    睿智的目标检测20——利用mAP计算目标检测精确度「建议收藏」睿智的目标检测20——利用mAP计算目标检测精确度学习前言GITHUB代码下载知识储备1、IOU的概念2、TPTNFPFN的概念3、precision(精确度)和recall(召回率)4、概念举例5、单个指标的局限性什么是AP绘制mAP学习前言好多人都想算一下目标检测的精确度,mAP的概念虽然不好理解,但是理解了就很懂。GITHUB代码下载这个是用来绘制mAP曲线的。https:…

    2022年10月13日
    2
  • python编程新手常犯的错误_python数组从0还是1

    python编程新手常犯的错误_python数组从0还是1在下面的例子中,希望做到的是数组a,b中元素大于3的置为1,其余为0。应该先做置0操作。程序:importnumpyasnpa=[1,2,2,3,4,5]a=np.array(a)b=[1,2,2,3,4,5]b=np.array(b)#错误的例子a[a>3]=1a[a<=3]=0print(‘a’,a)b[b<=3]=0b[b>3]=1print(‘b’,b)输出:a[00000

    2022年8月13日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号