卡尔曼滤波算法详细推导

卡尔曼滤波算法详细推导一、预备知识1、协方差矩阵是一个维列向量,是的期望,协方差矩阵为可以看出协方差矩阵都是对称矩阵且是半正定的协方差矩阵的迹是的均方误差2、用到的两个矩阵微分公式公式一:公式二:若是对称矩阵,则下式成立…

大家好,又见面了,我是你们的朋友全栈君。

一、预备知识

1、协方差矩阵

    X是一个n维列向量,u_ix_i的期望,协方差矩阵为

             P=E[(X-E[X])(X-E[X])^T] 

                =\begin{bmatrix} E[(x_1-u_1)(x_1-u_1)]& E[(x_1-u_1)(x_2-u_2)]& ...& E[(x_1-u_1)(x_n-u_n)]&\\ E[(x_2-u_2)(x_1-u_1)]& E[(x_2-u_2)(x_2-u_2)]& ...& E[(x_2-u_2)(x_n-u_n)]\\ ...& ...& ...& ...&\\ E[(x_n-u_n)(x_1-u_1)]& E[(x_n-u_n)(x_2-u_2)]& ...& E[(x_n-u_n)(x_n-u_n)]& \end{bmatrix}

      可以看出

   协方差矩阵都是对称矩阵且是半正定的  

   协方差矩阵的迹tr(P)X的均方误差

2、用到的两个矩阵微分公式

     公式一:

          \frac{\partial tr(AB)}{\partial A}=B^T

     公式二:若B是对称矩阵,则下式成立

          \frac{\partial tr(ABA^T)}{\partial A}=2AB         

tr表示矩阵的迹,具体推导过程参考相关矩阵分析教程  

二、系统模型与变量说明

1、系统离散型状态方程如下

     由k-1时刻到k时刻,系统状态预测方程

      X_k=AX_{k-1}+Bu_k+w_k

    系统状态观测方程

     Z_k=HX_k+v_k

2、变量说明如下

    A:状态转移矩阵

    u_k:系统输入向量

    B:输入增益矩阵

    w_k:均值为0,协方差矩阵为Q,且服从正态分布的过程噪声

    H:测量矩阵

    v_k:均值为0,协方差矩阵为R,且服从正态分布的测量噪声

    初始状态以及每一时刻的噪声{X_0, w_1,...,w_k,v_1,...v_k}都认为是互相独立的,实际上,很多真实世界的动态系统都并不确切的符合这个模型;但是由于卡尔曼滤波器被设计在有噪声的情况下工作,一个近似的符合已经可以使这个滤波器非常有用了。

三、卡尔曼滤波器

     卡尔曼估计实际由两个过程组成:预测与校正,在预测阶段,滤波器使用上一状态的估计,做出对当前状态的预测。在校正阶段,滤波器利用对当前状态的观测值修正在预测阶段获得的预测值,以获得一个更接进真实值的新估计值。

1、变量说明

    x_k:真实值

    \hat{x}_k:卡尔曼估计值

    P_k:卡尔曼估计误差协方差矩阵

    {\hat{x_k}}':预测值

    {P_k}':预测误差协方差矩阵

    K_k:卡尔曼增益

    \hat{z}_k:测量余量

2、卡尔曼滤波器计算过程

    预测:

    \hat{x}'_k=A\hat{x}_{k-1}+Bu_{k}

    {P}'_k=AP_{k-1}A^T+Q

    校正:

    \hat{z}_k=z_k-H\hat{x}'_k

    K_k={P}'_kH^T(H{P}'_kH^T+R)^{-1}

    \hat{x}_k=\hat{x}'_k+K_k\hat{z}_k

    更新协方差估计:

    P_k=(I-K_kH){P}'_k

    观察以上六个式子,我们使用过程中关键要明白{P}'_kK_k的算法原理,及P_k的更新算法

3、卡尔曼滤波算法详细推导

    从协方差矩阵开始说起,真实值与预测值之间的误差为

                 {e}'_k=x_k-\hat{x}'_k

    预测误差协方差矩阵为{P}'_k=E[{e}'_k{​{e}'_k}^T]=E[(x_k-\hat{x}'_k)(x_k-\hat{x}'_k)^T]

    真实值与估计值之间的误差为

           e_k=x_k-\hat{x}_k=x_k-(\hat{x}'_k+K_k(Hx_k+v_k-H\hat{x}'_k))

                =(I-K_kH)(x_k-\hat{x}'_k)-K_kv_k

    卡尔曼估计误差协方差矩阵为

             P_k=E[e_ke_k^T]

    将e_k代入得到

            P_k=E[[(I-K_kH)(x_k-\hat{x}'_k)-K_kv_k][(I-K_kH)(x_k-\hat{x}'_k)-K_kv_k]^T]

                  =(I-K_kH)E[(x_k-\hat{x}'_k)(x_k-\hat{x}'_k)^T](I-K_kH)^T+K_kE[v_k{v}^T_k]K^T                  

   其中  E[v_kv_k^T]=R,并将预测误差协方差矩阵代入,得到

                P_k=(I-K_kH){P}'_k(I-K_kH)^T+K_kRK_k^T

    卡尔曼滤波本质是最小均方差估计,而均方差是P_k的迹,将上式展开并求迹

                 tr(P_k)=tr({P}'_k)-2tr(K_kH{P}'_k)+tr(K_k(H{P}'_kH^T+R)K_k^T)

    最优估计K_k使tr(P_k)最小,所以上式两边对K_k求导

              \frac{\partial tr(P_k)}{\partial K_k} = -\frac{\partial tr(2K_kH{P}'_k)}{\partial K_k}+\frac{\partial tr(K_k(H{P}'_kH^T+R)K_k^T)}{\partial K_k}

套用第一节中提到的那两个矩阵微分公式,得到

             \frac{\partial tr(P_k)}{\partial K_k}=-2(H{P}'_k)^T+2K_k(H{P}'_kH^T+R)

令上式等于0,得到

                   K_k=P_k'H^T(HP_k'H^T+R)^{-1}

到此,我们就知道了卡尔曼增益是怎么算出来的了,但是又有问题,P'_k是怎么算的呢?

     P'_k=E[(x_k-\hat{x}'_k)(x_k-\hat{x}'_k)^T]

          =E[(Ax_{k-1}+Bu_k+w_k-A\hat{x}_{k-1}-Bu_k)(Ax_{k-1}+Bu_k+w_k-A\hat{x}_{k-1}-Bu_k)^T]

          =E[(A(x_{k-1}-\hat{x}_{k-1})+w_k)(A(x_{k-1}-\hat{x}_{k-1})+w_k)^T]

          =E[(Ae_{k-1})(Ae_{k-1})^T]+E[w_kw_k^T]

          =AP_{k-1}A^T+Q

    (注意其中展开过程用到了E[w_k]=0)

所以预测误差协方差矩阵P'_k可以由上一次算出的估计误差协方差矩阵P_{k-1}及状态转移矩阵A和过程激励噪声的协方差矩阵Q算得

4、总结

总结卡尔曼滤波的更新过程为

1步,首先P_0x_0已知,然后由P_0算出P'_1,再由P'_1算出K_1,有了这些参数后,结合观测值就能估计出x_1,再利用K_1更新P_1

2步,然后下次更新过程为由P_1算出P'_2,再由P'_2算出K_2,有了这些参数后,结合观测值就能估计出x_2,再利用K_2更新P_2

……

n步,由P_{n-1}算出P'_n,再由P'_n算出K_n,有了这些参数后,结合观测值就能估计出x_n,再利用K_n更新P_n

这就是卡尔曼滤波器递推过程。

至于P_k的算法,

   P_k=P'_k-K_kHP'_k-P'_kH^TK_k^T+K_k(HP'_kH^T+R)K_k^T

K_k代入上式右边最后一项中 ,K_k^T保持原样

   P_k=P'_k-K_kHP'_k-P'_kH^TK_k^T+P'_kH^T(HP'_kH^T+R)^{-1}(HP'_kH^T+R)K_k^T

        =P'_k-K_kHP'_k

       =(I-K_kH)P'_k

(转载请声明出处 谢谢合作)

reference:

1、https://zh.wikipedia.org/wiki/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2

2、《矩阵分析与应用》 张贤达 著

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/130650.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • EM算法 实例讲解「建议收藏」

    EM算法 实例讲解「建议收藏」第一次接触EM算法,是在完成半隐马尔科夫算法大作业时。我先在网上下载了两份Baum-Welch算法的代码,通过复制粘贴,修修补补,用java实现了HMM算法(应用是韦小宝掷两种骰子的问题)。然后,参考有关半隐马尔科夫算法的论文,照着论文中的公式修改隐马尔科夫算法,完成了大作业。现在回想起来,就隐隐约约记得有一大堆公式。最近,我看到一篇很好的文章,对EM算法的计算有了进一步的了解,文章链接为http

    2022年6月22日
    31
  • vm虚拟机怎么启动_虚拟机macos运行显卡驱动

    vm虚拟机怎么启动_虚拟机macos运行显卡驱动VM上完美运行macos作者:方辰昱时间:十月三号效果图简要步骤下载安装VM下载镜像文件链接,darwin.iso,unlocker,beamoff。合集下载链接:https://pan.baidu.com/s/1jeHA-ksEKT1iK5Ld7GmS9Q提取码:27tjunlock对VM进行操作使其对macos支持安装安装macos磁盘工具建立新的…

    2022年10月1日
    5
  • C++中this指针的作用以及用法详解

    C++中this指针的作用以及用法详解为什么引用this指针?当我们在类中定义了一个变量,同时又在类成员函数中定义了同一个变量时,也就是变量名重复时,但是我们要想使用类中的定义的变量,此时就需要this指针了。1.this指针的作用指针存在于类的成员函数中,指向被调用函数类实例的地址。 一个对象的this指针并不是对象本身的一部分,不会影响sizeof()的结果。this指针的作用域是在类内部,当在类的非静态成员函

    2022年5月13日
    47
  • 分子模拟软件amber_使用Amber创建小分子与蛋白质复合蛋白的坐标和拓扑文件

    分子模拟软件amber_使用Amber创建小分子与蛋白质复合蛋白的坐标和拓扑文件复合蛋白amber坐标和拓扑文件的创建作者:朱宁来源:大科研小分享前言分子动力学(MolecularDynamics,MD)是一门结合物理,数学和化学的综合技术。目前主流分子动力学软件有NAMD、GROMACS、AMBER等。AMBER分子动力学程序包是由加州圣弗兰西斯科大学(UCSF)的PeterAKollman和其同事编写的,程序很全,大约包含60多个程序,相互协调工…

    2022年5月26日
    48
  • JavaIO——IO概述

    JavaIO——IO概述                                                   JavaIo原理IO流用来处理设备之间的数据传输,Java程序中,对于数据的输入/输出操作都是以“流”的方式进行的。java.io包下提供了各种“流”类的接口,用以获取不同种类的数据,并…

    2022年6月3日
    31
  • [TensorFlow 学习笔记-02]配置PyCharm IDE环境「建议收藏」

    [TensorFlow 学习笔记-02]配置PyCharm IDE环境「建议收藏」工欲善其事必先利其器,IDE我选择的是PyCharm。[本地环境]操作系统:Windows7bit[PyCharm下载地址]下载地址:http://www.jetbrains.com/pycharm/download/#section=windows选择版本:Community,具体如下图所示:**[安装PyCharm]**采用默认安装方式,安装成功后,首次出现如下界面,Cr

    2022年8月26日
    4

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号