poj 2375

poj 2375这道题是一道gu

大家好,又见面了,我是你们的朋友全栈君。

        这道题是一道关于强连通分量的题目,不过这道题给出的图比较特殊,所以在求强连通分量时,可以采用广搜来做。

        这道强连通分量的题,给出的图十分特殊,如果在上下、左右四个方向相邻的区域,如果高度相同,则是相互可达的,所以我们可以通过搜索找出强连通分量,可以降低时间复杂度。

        不过在做这道时,开始想通过一次搜索来完成所有强连通分量的标记,不过有些问题一直无法解决,无奈只好多次广搜,每次找一个强连通分量。找到强连通分量,接下来的做法就和poj 1236(http://blog.csdn.net/u011008379/article/details/37995979)中的第二问做法一样了,这里就不多解释。

        代码(C++):

#include <cstdlib>
#include <iostream>
#include <algorithm>

#define MAX 509
using namespace std;

//#define LOCAL

typedef pair<int,int> pii;

int map[MAX][MAX],dir[][2]={
  
  {0,-1},{1,0},{0,1},{-1,0}},id[MAX][MAX],vis[MAX][MAX],odeg[MAX*MAX],ideg[MAX*MAX];
int p,s,n,m;
pii queue[MAX*MAX];

void bfs(int u,int v,int c)
{
     int a,b,i;
     pii tmp;
     
     p=s=0;
     id[u][v]=c;
     queue[p++]=make_pair(u,v);
     vis[u][v]=true; 
        
     while(s<p)
     {
         tmp=queue[s++];
         for(i=0;i<4;i++)
         {
             a=dir[i][1]+tmp.first;
             b=dir[i][0]+tmp.second;
                                  
             if(a>=0&&a<n&&b>=0&&b<m&&map[a][b]==map[tmp.first][tmp.second])
             {
                   if(vis[a][b]) continue;
                   id[a][b]=c;                               
                   queue[p++]=make_pair(a,b);  
                   vis[a][b]=true;                 
             }            
         }                    
     }
}

int main(int argc, char *argv[])
{
#ifdef LOCAL
   freopen("in.txt","r",stdin);
   freopen("out.txt","w",stdout);
#endif
    int i,j,k,x,y,a,b,c;
    while(scanf("%d %d",&m,&n)!=EOF)
    {
         for(i=0;i<n;i++)
         {
            for(j=0;j<m;j++)
            {
                scanf("%d",&map[i][j]);            
            }             
         }
         
         c=0;                 
         memset(vis,false,sizeof(vis));
         memset(id,-1,sizeof(id));
         for(i=0;i<n;i++)
         {
             for(j=0;j<m;j++)
             {
                 if(!vis[i][j]) bfs(i,j,c++);            
             }            
         }
         if(c==1)
         {
             printf("0\n");    
         }else{
             memset(ideg,0,sizeof(ideg));
             memset(odeg,0,sizeof(odeg));
             for(i=0;i<n;i++)
             {
                 for(j=0;j<m;j++)
                 {
                     for(k=0;k<4;k++)
                     {
                        a=dir[k][1]+i;
                        b=dir[k][0]+j;
                        if(a>=0&&a<n&&b>=0&&b<m)
                        {
                             if(id[i][j]!=id[a][b]) 
                             {
                                 if(map[i][j]>map[a][b])
                                 {
                                     odeg[id[i][j]]++;
                                     ideg[id[a][b]]++;                    
                                 }else{
                                    odeg[id[a][b]]++;
                                    ideg[id[i][j]]++;  
                                 }                   
                             }                    
                        }            
                     }           
                 }             
             }
             x=y=0;
             for(i=0;i<c;i++)
             {
                if(odeg[i]==0) x++;
                if(ideg[i]==0) y++;            
             }
             printf("%d\n",max(x,y));
         }          
    }
    system("PAUSE");
    return EXIT_SUCCESS;
}

题目(
http://poj.org/problem?id=2375):

Cow Ski Area
Time Limit: 1000MS   Memory Limit: 65536K
     

Description

Farmer John’s cousin, Farmer Ron, who lives in the mountains of Colorado, has recently taught his cows to ski. Unfortunately, his cows are somewhat timid and are afraid to ski among crowds of people at the local resorts, so FR has decided to construct his own private ski area behind his farm. 

FR’s ski area is a rectangle of width W and length L of ‘land squares’ (1 <= W <= 500; 1 <= L <= 500). Each land square is an integral height H above sea level (0 <= H <= 9,999). Cows can ski horizontally and vertically between any two adjacent land squares, but never diagonally. Cows can ski from a higher square to a lower square but not the other way and they can ski either direction between two adjacent squares of the same height. 

FR wants to build his ski area so that his cows can travel between any two squares by a combination of skiing (as described above) and ski lifts. A ski lift can be built between any two squares of the ski area, regardless of height. Ski lifts are bidirectional. Ski lifts can cross over each other since they can be built at varying heights above the ground, and multiple ski lifts can begin or end at the same square. Since ski lifts are expensive to build, FR wants to minimize the number of ski lifts he has to build to allow his cows to travel between all squares of his ski area. 

Find the minimum number of ski lifts required to ensure the cows can travel from any square to any other square via a combination of skiing and lifts.

Input

* Line 1: Two space-separated integers: W and L 

* Lines 2..L+1: L lines, each with W space-separated integers corresponding to the height of each square of land.

Output

* Line 1: A single integer equal to the minimal number of ski lifts FR needs to build to ensure that his cows can travel from any square to any other square via a combination of skiing and ski lifts

Sample Input

9 3
1 1 1 2 2 2 1 1 1
1 2 1 2 3 2 1 2 1
1 1 1 2 2 2 1 1 1

Sample Output

3

Hint

This problem has huge input data,use scanf() instead of cin to read data to avoid time limit exceed. 

OUTPUT DETAILS: 

FR builds the three lifts. Using (1, 1) as the lower-left corner, 

the lifts are (3, 1) <-> (8, 2), (7, 3) <-> (5, 2), and (1, 3) <-> 

(2, 2). All locations are now connected. For example, a cow wishing 

to travel from (9, 1) to (2, 2) would ski (9, 1) -> (8, 1) -> (7, 

1) -> (7, 2) -> (7, 3), take the lift from (7, 3) -> (5, 2), ski 

(5, 2) -> (4, 2) -> (3, 2) -> (3, 3) -> (2, 3) -> (1, 3), and then 

take the lift from (1, 3) – > (2, 2). There is no solution using 

fewer than three lifts.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/130775.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • CSDN社区内容创作规范

    CSDN长久以来秉持初心,致力于为广大用户提供良好的创作环境,打造健康有序的技术生态!但良好的社区环境,需各位创作者与CSDN共同维护建立!【CSDN内容创作规范】请在发文前认真阅读:如你发布的内容存在以下问题,文章将无法通过审核,违规情节严重的,将对帐号进行封号处理。请各位创作者严格遵守社区的内容创作规范,共同守护我们的社区环境!目录一、在平台发布以下相关内容审核将不予通过1、违反法律法规和相关政策2、无资质发布专业领域内容3、流量作弊4、营销/推广引流5、不文明用语6、

    2022年4月8日
    102
  • 深度学习(五)学习率的调节

    深度学习(五)学习率的调节   学习率对于深度学习是一个重要的超参数,它控制着基于损失梯度调整神经网络权值的速度,大多数优化算法(SGD、RMSprop、Adam)对其都有所涉及。学习率越小,损失梯度下降的速度越慢,收敛的时间更长,如公式所示:new_weight=existing_weight—learning_rate*gradient(新权值=当前权值–学习率×梯度)    如果学习…

    2022年5月20日
    85
  • 【JavaScript框架封装】实现一个类似于JQuery的属性框架的封装

    【JavaScript框架封装】实现一个类似于JQuery的属性框架的封装

    2021年6月9日
    104
  • 归一化、标准化、正则化公式相关小记「建议收藏」

    归一化、标准化、正则化公式相关小记「建议收藏」特征缩放面对特征数量较多的时候,保证这些特征具有相近的尺度(无量纲化),可以使梯度下降法更快的收敛。这两张图代表数据是否均一化的最优解寻解过程(左边是未归一化的),从这两张图可以看出,数据归一化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解在前边讲梯度下降的时候咱们也提到过,一般在最优化前会加归一化操作机器学习最优化算法之梯度下降_RayChiu757374816的博客-CSDN博客原因就是这样会减少数据模型的震荡,以最快的速度达到最优化。缩放的方法…

    2022年10月8日
    2
  • 常见的css换行样式[通俗易懂]

    常见的css换行样式[通俗易懂]常见的css换行样式1、内容超出省略号显示h1{width:500px;overflow:hidden;text-overflow:ellipsis;white-space:nowrap;}2、内容超出换行省略号显示h1{ text-overflow:-o-ellipsis-lastline;overflow:hidden;text-overflow:ellipsis;displa

    2025年7月3日
    4
  • 解决gradle下载慢的问题

    解决gradle下载慢的问题开发工具:IntelliJIDEA&AndroidStudio问题:新建项目下载gradle慢的问题解决:打开用户主目录linux平台/home/用户名/.gradlewindows平台c:\Users\用户名\.gradlemacos平台/Users/用户名/.gradle找到./gradle/wrapper/dist/gradle-版本号-bin目

    2022年6月16日
    31

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号