poj 2375

poj 2375这道题是一道gu

大家好,又见面了,我是你们的朋友全栈君。

        这道题是一道关于强连通分量的题目,不过这道题给出的图比较特殊,所以在求强连通分量时,可以采用广搜来做。

        这道强连通分量的题,给出的图十分特殊,如果在上下、左右四个方向相邻的区域,如果高度相同,则是相互可达的,所以我们可以通过搜索找出强连通分量,可以降低时间复杂度。

        不过在做这道时,开始想通过一次搜索来完成所有强连通分量的标记,不过有些问题一直无法解决,无奈只好多次广搜,每次找一个强连通分量。找到强连通分量,接下来的做法就和poj 1236(http://blog.csdn.net/u011008379/article/details/37995979)中的第二问做法一样了,这里就不多解释。

        代码(C++):

#include <cstdlib>
#include <iostream>
#include <algorithm>

#define MAX 509
using namespace std;

//#define LOCAL

typedef pair<int,int> pii;

int map[MAX][MAX],dir[][2]={
  
  {0,-1},{1,0},{0,1},{-1,0}},id[MAX][MAX],vis[MAX][MAX],odeg[MAX*MAX],ideg[MAX*MAX];
int p,s,n,m;
pii queue[MAX*MAX];

void bfs(int u,int v,int c)
{
     int a,b,i;
     pii tmp;
     
     p=s=0;
     id[u][v]=c;
     queue[p++]=make_pair(u,v);
     vis[u][v]=true; 
        
     while(s<p)
     {
         tmp=queue[s++];
         for(i=0;i<4;i++)
         {
             a=dir[i][1]+tmp.first;
             b=dir[i][0]+tmp.second;
                                  
             if(a>=0&&a<n&&b>=0&&b<m&&map[a][b]==map[tmp.first][tmp.second])
             {
                   if(vis[a][b]) continue;
                   id[a][b]=c;                               
                   queue[p++]=make_pair(a,b);  
                   vis[a][b]=true;                 
             }            
         }                    
     }
}

int main(int argc, char *argv[])
{
#ifdef LOCAL
   freopen("in.txt","r",stdin);
   freopen("out.txt","w",stdout);
#endif
    int i,j,k,x,y,a,b,c;
    while(scanf("%d %d",&m,&n)!=EOF)
    {
         for(i=0;i<n;i++)
         {
            for(j=0;j<m;j++)
            {
                scanf("%d",&map[i][j]);            
            }             
         }
         
         c=0;                 
         memset(vis,false,sizeof(vis));
         memset(id,-1,sizeof(id));
         for(i=0;i<n;i++)
         {
             for(j=0;j<m;j++)
             {
                 if(!vis[i][j]) bfs(i,j,c++);            
             }            
         }
         if(c==1)
         {
             printf("0\n");    
         }else{
             memset(ideg,0,sizeof(ideg));
             memset(odeg,0,sizeof(odeg));
             for(i=0;i<n;i++)
             {
                 for(j=0;j<m;j++)
                 {
                     for(k=0;k<4;k++)
                     {
                        a=dir[k][1]+i;
                        b=dir[k][0]+j;
                        if(a>=0&&a<n&&b>=0&&b<m)
                        {
                             if(id[i][j]!=id[a][b]) 
                             {
                                 if(map[i][j]>map[a][b])
                                 {
                                     odeg[id[i][j]]++;
                                     ideg[id[a][b]]++;                    
                                 }else{
                                    odeg[id[a][b]]++;
                                    ideg[id[i][j]]++;  
                                 }                   
                             }                    
                        }            
                     }           
                 }             
             }
             x=y=0;
             for(i=0;i<c;i++)
             {
                if(odeg[i]==0) x++;
                if(ideg[i]==0) y++;            
             }
             printf("%d\n",max(x,y));
         }          
    }
    system("PAUSE");
    return EXIT_SUCCESS;
}

题目(
http://poj.org/problem?id=2375):

Cow Ski Area
Time Limit: 1000MS   Memory Limit: 65536K
     

Description

Farmer John’s cousin, Farmer Ron, who lives in the mountains of Colorado, has recently taught his cows to ski. Unfortunately, his cows are somewhat timid and are afraid to ski among crowds of people at the local resorts, so FR has decided to construct his own private ski area behind his farm. 

FR’s ski area is a rectangle of width W and length L of ‘land squares’ (1 <= W <= 500; 1 <= L <= 500). Each land square is an integral height H above sea level (0 <= H <= 9,999). Cows can ski horizontally and vertically between any two adjacent land squares, but never diagonally. Cows can ski from a higher square to a lower square but not the other way and they can ski either direction between two adjacent squares of the same height. 

FR wants to build his ski area so that his cows can travel between any two squares by a combination of skiing (as described above) and ski lifts. A ski lift can be built between any two squares of the ski area, regardless of height. Ski lifts are bidirectional. Ski lifts can cross over each other since they can be built at varying heights above the ground, and multiple ski lifts can begin or end at the same square. Since ski lifts are expensive to build, FR wants to minimize the number of ski lifts he has to build to allow his cows to travel between all squares of his ski area. 

Find the minimum number of ski lifts required to ensure the cows can travel from any square to any other square via a combination of skiing and lifts.

Input

* Line 1: Two space-separated integers: W and L 

* Lines 2..L+1: L lines, each with W space-separated integers corresponding to the height of each square of land.

Output

* Line 1: A single integer equal to the minimal number of ski lifts FR needs to build to ensure that his cows can travel from any square to any other square via a combination of skiing and ski lifts

Sample Input

9 3
1 1 1 2 2 2 1 1 1
1 2 1 2 3 2 1 2 1
1 1 1 2 2 2 1 1 1

Sample Output

3

Hint

This problem has huge input data,use scanf() instead of cin to read data to avoid time limit exceed. 

OUTPUT DETAILS: 

FR builds the three lifts. Using (1, 1) as the lower-left corner, 

the lifts are (3, 1) <-> (8, 2), (7, 3) <-> (5, 2), and (1, 3) <-> 

(2, 2). All locations are now connected. For example, a cow wishing 

to travel from (9, 1) to (2, 2) would ski (9, 1) -> (8, 1) -> (7, 

1) -> (7, 2) -> (7, 3), take the lift from (7, 3) -> (5, 2), ski 

(5, 2) -> (4, 2) -> (3, 2) -> (3, 3) -> (2, 3) -> (1, 3), and then 

take the lift from (1, 3) – > (2, 2). There is no solution using 

fewer than three lifts.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/130775.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Awvs详细使用教程「建议收藏」

    Awvs详细使用教程「建议收藏」Awvs的是一款非常好用的web漏洞扫描工具,他的扫描速度比较快,可以自己选择扫描速度,比较灵活。Awvs分为老的版本和新版本,下面我介绍的是新版本的功能和用法。功能介绍如下:仪表盘(监视器)功能,添加目标功能,漏洞排序功能,扫描功能,发现功能,用户功能,扫描配置功能,网络扫描功能,追踪器功能,防火墙设置,邮件设置,引擎,时间排除功能,代理功能,常规设置主要使用的功能是前面的6个,后面的根据个人的需要进行配置详细介绍如下:Dashboard功能:翻译意思仪表盘(监视器),可以对扫描对扫描

    2025年8月24日
    4
  • Kali安装教程(VMWare)「建议收藏」

    Kali安装教程(VMWare)「建议收藏」1.下载镜像及相关1.1下载镜像文件下载链接:https://www.kali.org/downloads/选择自己需要的版本下载,根据经验先下载种子文件(torrent)再用迅雷下载网速是最有

    2022年8月5日
    8
  • 动机,努力工作,提高能力,提高战斗力,要注意保暖,维护创业热情。

    动机,努力工作,提高能力,提高战斗力,要注意保暖,维护创业热情。

    2022年1月2日
    42
  • 直插电阻类型_假插芯和真插芯的区别

    直插电阻类型_假插芯和真插芯的区别插件电阻也称为电阻器(Resistor)在日常生活中一般直接称为电阻。是一个限流元件,将电阻接在电路中后,电阻器的阻值是固定的一般是两个引脚,它可限制通过它所连支路的电流大小。插件电阻具体讲解大全:  固定电阻、可调电阻、特种电阻(敏感电阻)  不能调节的,我们称之为定值电阻或固定电阻,而可以调节的,我们称之为可调电阻.常见的可调电阻是滑动变阻器,例如收音机音量调节的装置是个圆形的滑动…

    2022年8月21日
    6
  • mapGetters 辅助函数「建议收藏」

    mapGetters 辅助函数「建议收藏」1:mapGetters:辅助函数mapGetters:辅助函数mapGetters:辅助函数仅仅将store中的getter映射到局部计算属性:1:import{mapGetters}from’vuex’2:exportdefault{computer:{//使用对象展开运算符将getter混入computer对象中…mapGetters([‘getMachin…

    2022年5月2日
    122
  • 玩转ADB命令(ADB命令使用大全)

    玩转ADB命令(ADB命令使用大全)我相信做Android开发的朋友都用过ADB命令,但是也只是限于安装应用push文件和设备重启相关,根深的也不知道了,其实我们完全可以了解多一点,有一些不常用的场景我们至少应该知道它可以做到,比如,我们知道adbinstall却不知道adbshellamstart。前者是用来安装软件,后者用来打开软件,后者的一个使用场景让我对他重视:公司定制Android系统,在调试屏幕的时候要看是否满屏

    2022年5月13日
    38

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号