poj 2375

poj 2375这道题是一道gu

大家好,又见面了,我是你们的朋友全栈君。

        这道题是一道关于强连通分量的题目,不过这道题给出的图比较特殊,所以在求强连通分量时,可以采用广搜来做。

        这道强连通分量的题,给出的图十分特殊,如果在上下、左右四个方向相邻的区域,如果高度相同,则是相互可达的,所以我们可以通过搜索找出强连通分量,可以降低时间复杂度。

        不过在做这道时,开始想通过一次搜索来完成所有强连通分量的标记,不过有些问题一直无法解决,无奈只好多次广搜,每次找一个强连通分量。找到强连通分量,接下来的做法就和poj 1236(http://blog.csdn.net/u011008379/article/details/37995979)中的第二问做法一样了,这里就不多解释。

        代码(C++):

#include <cstdlib>
#include <iostream>
#include <algorithm>

#define MAX 509
using namespace std;

//#define LOCAL

typedef pair<int,int> pii;

int map[MAX][MAX],dir[][2]={
  
  {0,-1},{1,0},{0,1},{-1,0}},id[MAX][MAX],vis[MAX][MAX],odeg[MAX*MAX],ideg[MAX*MAX];
int p,s,n,m;
pii queue[MAX*MAX];

void bfs(int u,int v,int c)
{
     int a,b,i;
     pii tmp;
     
     p=s=0;
     id[u][v]=c;
     queue[p++]=make_pair(u,v);
     vis[u][v]=true; 
        
     while(s<p)
     {
         tmp=queue[s++];
         for(i=0;i<4;i++)
         {
             a=dir[i][1]+tmp.first;
             b=dir[i][0]+tmp.second;
                                  
             if(a>=0&&a<n&&b>=0&&b<m&&map[a][b]==map[tmp.first][tmp.second])
             {
                   if(vis[a][b]) continue;
                   id[a][b]=c;                               
                   queue[p++]=make_pair(a,b);  
                   vis[a][b]=true;                 
             }            
         }                    
     }
}

int main(int argc, char *argv[])
{
#ifdef LOCAL
   freopen("in.txt","r",stdin);
   freopen("out.txt","w",stdout);
#endif
    int i,j,k,x,y,a,b,c;
    while(scanf("%d %d",&m,&n)!=EOF)
    {
         for(i=0;i<n;i++)
         {
            for(j=0;j<m;j++)
            {
                scanf("%d",&map[i][j]);            
            }             
         }
         
         c=0;                 
         memset(vis,false,sizeof(vis));
         memset(id,-1,sizeof(id));
         for(i=0;i<n;i++)
         {
             for(j=0;j<m;j++)
             {
                 if(!vis[i][j]) bfs(i,j,c++);            
             }            
         }
         if(c==1)
         {
             printf("0\n");    
         }else{
             memset(ideg,0,sizeof(ideg));
             memset(odeg,0,sizeof(odeg));
             for(i=0;i<n;i++)
             {
                 for(j=0;j<m;j++)
                 {
                     for(k=0;k<4;k++)
                     {
                        a=dir[k][1]+i;
                        b=dir[k][0]+j;
                        if(a>=0&&a<n&&b>=0&&b<m)
                        {
                             if(id[i][j]!=id[a][b]) 
                             {
                                 if(map[i][j]>map[a][b])
                                 {
                                     odeg[id[i][j]]++;
                                     ideg[id[a][b]]++;                    
                                 }else{
                                    odeg[id[a][b]]++;
                                    ideg[id[i][j]]++;  
                                 }                   
                             }                    
                        }            
                     }           
                 }             
             }
             x=y=0;
             for(i=0;i<c;i++)
             {
                if(odeg[i]==0) x++;
                if(ideg[i]==0) y++;            
             }
             printf("%d\n",max(x,y));
         }          
    }
    system("PAUSE");
    return EXIT_SUCCESS;
}

题目(
http://poj.org/problem?id=2375):

Cow Ski Area
Time Limit: 1000MS   Memory Limit: 65536K
     

Description

Farmer John’s cousin, Farmer Ron, who lives in the mountains of Colorado, has recently taught his cows to ski. Unfortunately, his cows are somewhat timid and are afraid to ski among crowds of people at the local resorts, so FR has decided to construct his own private ski area behind his farm. 

FR’s ski area is a rectangle of width W and length L of ‘land squares’ (1 <= W <= 500; 1 <= L <= 500). Each land square is an integral height H above sea level (0 <= H <= 9,999). Cows can ski horizontally and vertically between any two adjacent land squares, but never diagonally. Cows can ski from a higher square to a lower square but not the other way and they can ski either direction between two adjacent squares of the same height. 

FR wants to build his ski area so that his cows can travel between any two squares by a combination of skiing (as described above) and ski lifts. A ski lift can be built between any two squares of the ski area, regardless of height. Ski lifts are bidirectional. Ski lifts can cross over each other since they can be built at varying heights above the ground, and multiple ski lifts can begin or end at the same square. Since ski lifts are expensive to build, FR wants to minimize the number of ski lifts he has to build to allow his cows to travel between all squares of his ski area. 

Find the minimum number of ski lifts required to ensure the cows can travel from any square to any other square via a combination of skiing and lifts.

Input

* Line 1: Two space-separated integers: W and L 

* Lines 2..L+1: L lines, each with W space-separated integers corresponding to the height of each square of land.

Output

* Line 1: A single integer equal to the minimal number of ski lifts FR needs to build to ensure that his cows can travel from any square to any other square via a combination of skiing and ski lifts

Sample Input

9 3
1 1 1 2 2 2 1 1 1
1 2 1 2 3 2 1 2 1
1 1 1 2 2 2 1 1 1

Sample Output

3

Hint

This problem has huge input data,use scanf() instead of cin to read data to avoid time limit exceed. 

OUTPUT DETAILS: 

FR builds the three lifts. Using (1, 1) as the lower-left corner, 

the lifts are (3, 1) <-> (8, 2), (7, 3) <-> (5, 2), and (1, 3) <-> 

(2, 2). All locations are now connected. For example, a cow wishing 

to travel from (9, 1) to (2, 2) would ski (9, 1) -> (8, 1) -> (7, 

1) -> (7, 2) -> (7, 3), take the lift from (7, 3) -> (5, 2), ski 

(5, 2) -> (4, 2) -> (3, 2) -> (3, 3) -> (2, 3) -> (1, 3), and then 

take the lift from (1, 3) – > (2, 2). There is no solution using 

fewer than three lifts.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/130776.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • c语言bzero函数_hikaricp源码分析

    c语言bzero函数_hikaricp源码分析看《网络编程》,对bzero等函数的实现颇有兴趣,于是便翻看了其源代码的实现。bzero、bcopy、bcmp等函数源码如下:bzero源码:voidbzero(s1,n) void*s1; unsignedn;{ registerchar*t=s1; while(n!=0){ *t++=0; n–; }}bcopy源码如下:

    2022年10月13日
    4
  • servlet与jsp区别_servlet和class的区别

    servlet与jsp区别_servlet和class的区别JSP和Servlet都是与使用Java构建基于Web的应用程序有关的重要概念。基本上,Servlet是Java中HTML,而JSP是HTML中的Java。任何典型的Web开发面试都可能有几个基于JSP和Servlet的Java面试问题。尽管JSP和Servlet的主要目的是相同的,但是两者之间还是有一些重要的区别。在深入研究两个Java概念之间的差异之前,让我们首先对它们有一…

    2022年4月20日
    72
  • Linux内核设计基础(十)之内核开发与总结

    Linux内核设计基础(十)之内核开发与总结

    2021年12月1日
    46
  • 漂亮的复制零_一张图片有很多小图片组成

    漂亮的复制零_一张图片有很多小图片组成前言磁盘可以说是计算机系统最慢的硬件之一,读写速度相差内存10倍以上,所以针对优化磁盘的技术非常的多,比如零拷贝、直接I/O、异步I/O等等,这些优化的目的就是为了提高系统的吞吐量,另外操作系统内核中的磁盘高速缓存区,可以有效的减少磁盘的访问次数。这次,我们就以「文件传输」作为切入点,来分析I/O工作方式,以及如何优化传输文件的性能。正文为什么要有DMA技术?在没有DMA技术前,I/O的过程是这样的:CPU发出对应的指令给磁盘控制器,然后返回;磁盘控制器收到..

    2022年9月21日
    5
  • 模仿学习–技术综述[通俗易懂]

    模仿学习–技术综述[通俗易懂]概念:局限性:2.1数据的可获得性影子模式可以有效的解决数据的可获得性,但是其中的数据也包括了不值得提倡的司机行为;2.2模型的有效性端到端的特性:1)可解释性较差;可解释性上刚刚有所进展(可解释机器学习?-文档)2)难以在中间过程中,接收信息和指令;应用方式:1)基于规则的规划、控制模块,还是基础的功能实现方案;2)强化学习、模仿学习,作为规划、控制模块的备份方案,在极端场景下-connercase或规则无法覆盖的场景,能够有效的实现相应功能模块。论文及学习..

    2022年9月16日
    2
  • CRC在线计算器,很好用「建议收藏」

    CRC在线计算器,很好用「建议收藏」http://www.ip33.com/crc.html

    2025年6月2日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号