密码学:RSA加密算法详解

密码学:RSA加密算法详解RSA算法一直是最广为使用的”非对称加密算法”。本文旨在说明RSA加密算法的原理及实现,而其相关的数学部分的证明则不是本文内容。

大家好,又见面了,我是你们的朋友全栈君。

概述

  本文旨在说明RSA加密算法的原理及实现,而其相关的数学部分的证明则不是本文内容。


版权说明

著作权归作者所有。

商业转载请联系作者获得授权,非商业转载请注明出处。

作者:Q-WHai

发表日期: 2016年2月29日

本文链接:http://blog.csdn.net/lemon_tree12138/article/details/50696926

来源:CSDN

更多内容:分类 » 数据加密与信息安全


RSA简介

  1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。从那时直到现在,RSA算法一直是最广为使用的”非对称加密算法”。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。

                                                                                   — 摘自网络


数学背景

  此部分旨在补充本文的完整性。如果说你已经了解,或是不想了解此部分内容。那么可以直接跳过此部分的阅读。

  虽说只是补充说明(只能是补充的原因是因为博主的数学也是比较差的-_-!!!),但是此部分的内容却是相当重要的。博主还是希望可以重新阅读一下此部分。

1.互质

  从小学开始,我们就了解了什么是质数。互质是针对多个数字而言的,如果两个正整数,除了1以外,没有其他公因子,那么就称这两个数是互质关系(注意,这里并没有说这两个数一定是质数或有一个为质数。比如15跟4就是互质关系)。以下有一些关于质数与互质的性质:

  • 质数只能被1和它自身整除
  • 任意两个质数都是互质关系
  • 如果两个数之中,较大的那个数是质数,则两者构成互质关系
  • 如果两个数之中,较小的那个数是质数,且较大数不为较小数的整数倍,则两者构成互质关系
  • 1和任意一个自然数是都是互质关系
  • p是大于1的整数,则p和p-1构成互质关系
  • p是大于1的奇数,则p和p-2构成互质关系

2.欧拉函数

  欧拉函数是求小于x并且和x互质的数的个数。其通式为:φ(x) = x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn)

  其中p1, p2……pn为x的所有质因数,x是不为0的整数。看到这里是不是有一些头疼,太理论的东西的确不够具象。我们且不去理会后面公式计算与论证,因为已经超出本文的范围了。就前一句来说说吧,欧拉函数是求小于x并且和x互质的数的个数。这里我可以列举一个例子:

  令x = 16,那么x的所有质因数为:φ(16) = 16 * (1 – 1/2) = 8

  我们也可以枚举出所有比16小,且与16互质的数:1, 3, 5, 7, 9, 11, 13, 15

  现在也给出部分欧拉函数的性质:

  • 若n是素数p的k次幂,密码学:RSA加密算法详解,因为除了p的倍数外,其他数都跟n互质
  • 欧拉函数是积性函数——若m,n互质,密码学:RSA加密算法详解
  • 当n为奇数时,密码学:RSA加密算法详解
  • p是素数,密码学:RSA加密算法详解,φ(p)称为p的欧拉值

  欧拉函数更多参考请见这里的链接


3.模反元素

定义:如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1。

关于模反元素的求解,使用的是朴素的解法。如果读者想要更进一步了解的话,请自行搜索其他解法(比如:辗转相除法、欧几里德算法)。


RSA原理

  在RSA原理之前,我想还是有必要了解一下非对称加密算法的加密跟解密过程。下面就是一幅非称加密算法的流程图。

  密码学:RSA加密算法详解

  在此可以看到,非对称加密是通过两个密钥(公钥-私钥)来实现对数据的加密和解密的。公钥用于加密,私钥用于解密。对于非对称的加密和解密为什么可以使用不同的密钥来进行,这些都是数学上的问题了。不同的非对称加密算法也会应用到不同的数学知识。上面也对RSA中使用的数学问题做了一个小小的介绍。现在就来看看RSA算法是怎么来对数据进行加密的吧,如下是一幅RSA加密算法流程及加密过程图。

  密码学:RSA加密算法详解


RSA应用

1. 实例模型

  就以上图中的Bob和Alice来举例吧。

  现在Alice通过密钥生成器生成了一对密钥(公钥-私钥)。只把公钥对外公开了。并说,你有什么要跟我说的,就用模幂运算和公钥加密后发给我吧。

  此时,Bob已经获得了Alice发布的公钥。使用模幂运算对明文进行了加密,就把加密后的密文发送给了Alice。

  Alice获得Bob发来的密文并没有使用公钥对密文进行解密,并获得了明文。因为解密过程需要使用的密钥是私钥。


2. RSA算法实现

  下面的代码只是根据RSA算法的定义,使用Java开发语言实现。且这里只是展示了一些关键步骤,完整过程可以参见下面的源码下载文档。

public class RSA {    
    /**
     * 获得(公/私)密钥
     */
    public final Map<String, RSAKey> getCipherKeys() {
        ...
        int[] primes = getRandomPrimes(2);
        int modulus = modulus(primes[0], primes[1]);
        int euler = euler(primes[0], primes[1]);
        int e = cipherExponent(euler);
        int inverse = inverse(euler, e);
        publicKey.setExponent(e);
        publicKey.setModulus(modulus);
        privateKey.setExponent(inverse);
        privateKey.setModulus(modulus);
        ...
    }
    
    /**
     * 加密
     */
    public int encode(int plaintext, RSAPublicKey key) {
        return modularPower2(plaintext, key.getExponent(), key.getModulus());
    }
    
    /**
     * 解密
     */
    public int decode(int chipertext, RSAPrivateKey key) {
        return modularPower2(chipertext, key.getExponent(), key.getModulus());
    }

    // 随机生成count个素数
    private final int[] getRandomPrimes(int count) {
        ...
        try {
            primeLabels = FileReadUtils.readLines("./data/prime_table");
        } catch (IOException e) {
            e.printStackTrace();
        }
        for (int i = 0; i < primes.length; i++) {
            primes[i] = Integer.parseInt(primeLabels.get(indexs.get(i)));
        }

        return primes;
    }

    // 计算公共模数
    private final int modulus(int p, int q) {
        return p * q;
    }

    // 计算欧拉数
    private final int euler(int p, int q) {
        return (p - 1) * (q - 1);
    }

    // 计算加密指数
    private final int cipherExponent(int euler) {
        Random random = new Random();

        int e = 7;
        do {
            e = random.nextInt(euler - 1);
        } while (!isCoprime(e, euler) || e <= 1);

        return e;
    }

    // 判断两个数互素
    private final boolean isCoprime(int number1, int number2) {

        int sqrt = (int) Math.sqrt(Math.max(number1, number2));
        for (int i = 2; i <= sqrt; i++) {
            if (number1 % i == 0 && number2 % 2 == 0) {
                return false;
            }
        }

        return true;
    }

    // 计算“模的逆元”
    // (d * e) ≡ 1 mod euler
    private final int inverse(int euler, int e) {
        ...
        while (flag) {
            q = m[2] / n[2];
            for (int i = 0; i < 3; i++) {
                temp[i] = m[i] - q * n[i];
                m[i] = n[i];
                n[i] = temp[i];
            }
            if (n[2] == 1) {
                if (n[1] < 0) {
                    n[1] = n[1] + euler;
                }
                return n[1];
            }
            if (n[2] == 0) {
                flag = false;
            }
        }
        return 0;
    }
    
    // 模幂运算
    private final int modularPower(int base, int e, int modular) {
        int result = 1;
        do {
            if (isOdd(e)) {
                result = (result * (base % modular)) % modular;
                e -= 1;
            } else {
                base = (base * base) % modular;
                e /= 2;
            }
        } while (e > 0);
        
        result %= modular;
        
        return result;
    }
}

RSA算法判别

RSA算法优点

  1. 不需要进行密钥传递,提高了安全性
  2. 可以进行数字签名认证

RSA算法缺点

  1. 加密解密效率不高,一般只适用于处理小量数据(如:密钥)
  2. 容易遭受小指数攻击


Ref

  1. 《算法导论》
  2. 《算法的乐趣》
  3. 《深入浅出密码学》
  4. RSA算法原理(一) — 阮一峰
  5. RSA算法原理(二) — 阮一峰
  6. 逆元详解 — ACdreamers
  7. JAVA实现扩展欧几里德算法求乘法逆元

源码下载

http://download.csdn.net/detail/u013761665/9439852

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/131028.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • bool函数忘记写return(false)会怎样[通俗易懂]

    bool函数忘记写return(false)会怎样[通俗易懂]http://hi.baidu.com/pope123/item/9d473e7f3ea341376f29f674这篇文章用汇编告诉了我返回值有可能是true也可能是false,但我看不懂,以后攻。 我为什么会接触到这个问题,请看实际例子:原来我漏写了代码中有颜色的两条语句,发现程序运行结果出乎我的意料。我原来以为不写就是默认返回false。其实 bool work()原来是voi

    2022年6月2日
    58
  • 人工势场法(APF) —— Path Planning「建议收藏」

    人工势场法(APF) —— Path Planning「建议收藏」版权声明:本文为博主原创博文,未经允许不得转载,若要转载,请说明出处并给出博文链接人工势场法(ArtificialPotentialField,APF)是一种将机器人的外形视为势场中的一个点,这个势场结合了对目标的吸引力和对障碍物的排斥力。得到的轨迹作为路径输出。该方法具有计算量小、容易理解等优点。然而,它们可能陷入势场的局部极小值而无法找到路径,或者无法找到最优路径。人工势场可以被视为与静电势场类似的连续方程(将机器人视为点电荷),或者通过场的运动可以使用一组语言规则进行离散…

    2022年6月17日
    40
  • ODBC 安装/使用/编程

    ODBC 安装/使用/编程前言:主要讲解ODBCAPI,以mysql为例,从配置到安装,再到具体的编程,以期对ODBC有个初步的认识.*)下载mysql,选择社区版mysql,并安装http://dev.m

    2022年7月1日
    22
  • pycharm如何修改背景颜色_如何设置幻灯片背景颜色为自定义

    pycharm如何修改背景颜色_如何设置幻灯片背景颜色为自定义Pycharm可以通过设置主题来设定背景颜色,但主题的背景颜色也仅仅局限特定的几种,通过如下的方式可以自定义背景颜色。File——Settings——Editor——General——(右侧上方的框框)Text——Defaulttext——选右侧的Background就可以设置背景色了。图中的灰色背景RGB是192,192,192。 …

    2022年8月25日
    5
  • 03-iframe属性src的使用

    src如果写成jsp页面,将会访问jsp页面,如果写成某个Action,会在访问该页面的时候自动的调用这个Action。  管理中心 indexAction_visitMenus”width=

    2022年4月7日
    34
  • 论概率:从局部随机性到整体确定性

    论概率:从局部随机性到整体确定性概率论与数理统计概率计算三原则学概率论拼的不是数学,而是语文能力独立性条件概率与贝叶斯公式全概率公式 概率计算三原则所有概率问题,都基于三个计算法则:加法法则:如果事件A和事件B相互排斥,而事件A有p种产生方式,事件B有q种产生方式,则事件”A或B”有p+q种产生方式。乘法法则:如果事件A和事件B相互独立,且事件A有p种产生方式,事件B有q种产生方式,则事件”A与B”有p*q种产生方式。.

    2022年5月30日
    38

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号