dropout层

dropout层之前了解的网络都是在全连接层加dropout层,防止模型过拟合。在看deepfm的模型的时候,发现在每一层都可以加入dropout层对dropout层的深入理解做分类的时候,Dropout层一般加在全连接层防止过拟合提升模型泛化能力。而很少见到卷积层后接Dropout(原因主要是卷积参数少,不易过拟合)er类似卷积神经网络,只是在最后的全连接层使用dropout,循环神经…

大家好,又见面了,我是你们的朋友全栈君。

之前了解的网络都是在全连接层加dropout层,防止模型过拟合。在看deepfm的模型的时候,发现在每一层都可以加入dropout层

对dropout层的深入理解

做分类的时候,Dropout 层一般加在全连接层 防止过拟合 提升模型泛化能力。而很少见到卷积层后接Drop out (原因主要是 卷积参数少,不易过拟合) er

类似卷积神经网络,只是在最后的全连接层使用dropout,循环神经网络一般在不同层循环结构体zhij使用dropout, 而不在同一层的循环结构之间使用

 

其中dropout论文:

from the Srivastava/Hinton dropout paper:

“The additional gain in performance obtained by adding dropout in the convolutional layers (3.02% to 2.55%) is worth noting. One may have presumed that since the convolutional layers don’t have a lot of parameters, overfitting is not a problem and therefore dropout would not have much effect. However, dropout in the lower layers still helps because it provides noisy inputs for the higher fully connected layers which prevents them from overfitting.” 
They use 0.7 prob for conv drop out and 0.5 for fully connected.

即,卷积层参数较少,加入dropout作用甚微,较低层,有噪音,较高层,全连接层可以增加模型的鲁棒性,泛化性能。

 

关于dropout能够较好减轻CNN过拟合的原因,看了一些论文和博客,目前有多种不同的解释,大致整理如下。

在设计网络时,设定的每层神经元代表一个学习到的中间特征(即几个权值的组合),网络所有神经元共同作用来表征输入数据的特定属性(如图像分类中,表征所属类别)。当相对于网络的复杂程度(即网络的表达能力、拟合能力)而言数据量过小时,出现过拟合,显然这时各神经元表示的特征相互之间存在许多重复和冗余。

dropout的直接作用是减少中间特征的数量,从而减少冗余,即增加每层各个特征之间的正交性(数据表征的稀疏性观点也恰好支持此解释)。
 

 

测试层面

预测的时候,每一个单元的参数要预乘以p。 
img5

 

lingyizhong dropout 的设定:

测试阶段不需要设定dropout的值。

1.前向传播

训练阶段:前向传播给定每个神经元一个随机值(0~1),假定设置采样阈值为0.5,如果该神经元对应的随机值小于0.5,则设置该神经元为0,否则设置该神经元值为2乘以原值,(1/0.5),并把所有神经元对应的随机值保存下来,在后向传播是需要使用。

测试阶段:无需dropout。

2.反向传播

读取在前向传播记录的随机值,同样的操作:该梯度值对应的随机值小于0.5,则设置该梯度值为0,否则设置该梯度值值为2乘以原值,(1/0.5)。

 

 

 

dropout率的选择

  • 经过交叉验证,隐含节点dropout率等于0.5的时候效果最好,原因是0.5的时候dropout随机生成的网络结构最多。
  • dropout也可以被用作一种添加噪声的方法,直接对input进行操作。输入层设为更接近1的数。使得输入变化不会太大(0.8)

dropout 概率值得选取:通常会设置为0.5,然后通过验证集来确定随机采样概率(0.5的时候最随机,可以产生网络的组合最多)

输入层的时候随机采样选取的比较多,随机扔掉的比较少,通常训练集的概率在0.1左右,中间层可以选取0.5左右,

 

我的经验是决定dropout之前,需要先判断是否模型过拟合

先dropout=0, 训练后得到模型的一些指标(比如:  F1, Accuracy, AP)。比较train数据集和test数据集的指标。

  • 过拟合:尝试下面的步骤。
  • 欠拟合:尝试调整模型的结构,暂时忽略下面步骤。

dropout设置成0.4-0.6之间, 再次训练得到模型的一些指标。

  • 如果过拟合明显好转,但指标也下降明显,可以尝试减少dropout(0.2)
  • 如果过拟合还是严重,增加dropout(0.2)

重复上面的步骤多次,就可以找到理想的dropout值了

 

dropout随机扔掉一些神经元,因此在迭代的时候,该神经元对应的权重即保持上一步不变,其他的权重即更新(个人理解,在该步就类似与找最优解,这一步的迭代陷入了局部最优解,在下一个batch中,继续迭代,重新寻找最优解,多个这种寻找过程,可以较好的避免模型陷入局部最优解,因此最终的结果较好)

 

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/132494.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 钩子教程 – 原理(十六) : KeyboardProc

    钩子教程 – 原理(十六) : KeyboardProc原文地址:http://www.zdexe.com/program/201004/590.html方法11:KeyboardProcFunctionThe KeyboardProc

    2022年7月2日
    33
  • kali linux 云服务器,云服务器安装kali linux

    kali linux 云服务器,云服务器安装kali linux前言在网上可以搜索到2种在腾讯云服务器上安装kali系统的方法:第一种方法:通过挂载云硬盘到云服务器上,将kali镜像刻录到挂载的云硬盘中,利用VNC可视化安装kali系统;查看详情第二种方法:在本地搭建好kali虚拟机环境,然后通过制作符合腾讯云的kali镜像上传到腾讯云对象存储桶,利用重置系统自定义镜像功能进行安装kali;查看详情以上两中方法博主都尝试过,第一种方法安装成功过一次,而…

    2022年5月10日
    45
  • RewriteCond指令格式

    RewriteCond指令格式RewriteCond指令格式语法:RewriteCondTestStringCondPattern[flags]RewriteCond指令定义一条规则条件。在一条RewriteRule指令前面可能会有一条或多条RewriteCond指令,只有当自身的模板(pattern)匹配成功且这些条件也满足时规则才被应用于当前URL处理。1、TestString是一个纯文本的字符串,除

    2022年6月13日
    24
  • linux命令 ll信息详解[通俗易懂]

    linux命令 ll信息详解[通俗易懂]本文链接:https://blog.csdn.net/LEON1741/article/details/82386520在linux下使用“ls-l”或者“ls-al”或者“ll”命令查看文件及目录详情时,shell中会显示出好几列的信息。平时也没怎么注意过,今天忽然心血来潮想了解一下,于是整理了这篇博客,以供参考:首先给出一张典型的显示结果:下面对其中的每一列进行详细的分析:…

    2022年6月29日
    28
  • 如何制作404页面

    如何制作404页面第一步:选取你喜欢的404页面,右键查看源代码,全选复制。第二步:粘贴刚才复制的代码到编辑器,更改对应的跳转链接,文字,以及页面的标题,404图片路径。查看修改编码方式,如不修改可能出现乱码,命名为404.html。第三步:制作404图片,将图片保存到桌面。第四步:打开404.html,没有问题后上传到网站根目录,图片上传到对应的图片路径第五步:在主机管理后台-基础环境设置…

    2022年7月27日
    6
  • 从零开始的计网学习——计算机网络概述(计网入门就看这篇!)

    从零开始的计网学习——计算机网络概述(计网入门就看这篇!)计算机网络不论是就业还是升学都是核心的一门课程,一起从零开始,学习计算机网络!

    2022年5月28日
    44

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号