大家好,又见面了,我是你们的朋友全栈君。
假设有一根长度为24cm的钢筋,现在对其进行截取焊接成一个长方体框架,
如何截取焊接才能保证长方体的体积最大?
下面引出均值不等式可以解决这个问题。


![A_{3}= \sqrt[n]{a_{1}a_{2}......a_{n}}](https://javaforall.net/wp-content/uploads/2020/11/2020110817443450.jpg)

则有:


对
进行证明:
构建两个序列


由排序不等式 顺序和≥乱序和≥倒序和 显然有下列不等式关系



接下来利用这个关系证明


![\dpi{80} \geq n\sqrt[n]{\frac{1}{a_{1}a_{2}......a_{n}}}](https://javaforall.net/wp-content/uploads/2020/11/2020110817443450.jpg)
![= \frac{n}{\sqrt[n]{a_{1}a_{2}......a_{n}}}](https://javaforall.net/wp-content/uploads/2020/11/2020110817443450.jpg)
不等式两边同时取倒数
![\frac{1}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+......+\frac{1}{a_{n}}}\leq \frac{1}{\frac{n}{\sqrt[n]{a_{1}a_{2}......a_{n}}}}](https://javaforall.net/wp-content/uploads/2020/11/2020110817443450.jpg)
不等式两边同时乘以n
![\frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+......+\frac{1}{a_{n}}}\leq \sqrt[n]{a_{1}a_{2}......a_{n}}](https://javaforall.net/wp-content/uploads/2020/11/2020110817443450.jpg)

得证
接下来证明


](https://javaforall.net/wp-content/uploads/2020/11/2020110817443450.jpg)
由 柯西施瓦茨不等式 可得

然后两边同时开平方可得

得证
四个均值不等式得证
![\sqrt{\frac{\sum (i=1,n) _{a_{i}}^{2}}{n}}\geq \frac{\sum (i=1,n)a_{i}}{n}\geq \sqrt[n]{\prod_{i= 1}^{n}a_{i}}\geq \frac{n}{\sum (i=1,n)\frac{1}{a_{i}}}](https://javaforall.net/wp-content/uploads/2020/11/2020110817443450.jpg)
等号成立条件

对此可以解决上面的实际问题了
发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/132536.html原文链接:https://javaforall.net
