dropout理解「建议收藏」

dropout理解「建议收藏」1.dropout解决的问题深度神经网络的训练是一件非常困难的事,涉及到很多因素,比如损失函数的非凸性导致的局部最优值、计算过程中的数值稳定性、训练过程中的过拟合等。过拟合是指模型训练到一定程度后,在测试集上得到的测试误差远大于在训练集上得到的误差。导致过拟合的主要原因有: 1.训练数据集太小 2.模型太复杂 3.过度训练2.dropoutdropout是指在训练一…

大家好,又见面了,我是你们的朋友全栈君。

1.dropout解决的问题

深度神经网络的训练是一件非常困难的事,涉及到很多因素,比如损失函数的非凸性导致的局部最优值、计算过程中的数值稳定性、训练过程中的过拟合等。

过拟合是指模型训练到一定程度后,在测试集上得到的测试误差远大于在训练集上得到的误差。

导致过拟合的主要原因有: 
1. 训练数据集太小 
2. 模型太复杂 
3. 过度训练

2.dropout

dropout是指在训练一个很大的神经网络时,它在每次迭代的过程中随机“关闭”一些神经元,被关闭的神经元在前向和反向传播中都不贡献作用,英文即是“dropout”的意思。如下图所示: 
dropout示意图 
我们看到图中打叉的神经元就是被“dropout”掉的神经元,和这些个神经元相连接的权重值也一并被“抹去”,不参与本次训练。不参与本次训练是说在当前的batch中,不参与训练,每个batch都会随机挑选神经元做dropout。

dropout为什么可以防止过拟合
dropout的解决方案,在每一次迭代的过程中,我们会随机dropout掉一些神经元(至于在那一层做dropout,需要看不同的情况),如果设置的dropout的值为0.8,则表示每个神经元有80%的概率被留下来,20%的概率被”抹去“。这就相当于我们从原来的神经网络中随机采样了80%的节点,组成了一个新的神经网络,这个是原来的神经网络的一个子网络,但是规模要比原来的神经网络小很多,并且训练代价也比较小。我们多次迭代优化,每次迭代优化都会做这样的”随机采样“,从原来的网络中构造一个子网络(sub-network),而每次构造的网络也都不尽相同,这样每个神经元对另一个特定神经元的激活很不敏感。这样参数就不会过分依赖于训练数据,增加了模型的泛化能力。

只在训练过程中使用dropout,在测试期间不使用dropout。因为在测试阶段,我们不期望输出结果是随机的,如果测试阶段应用了dropout,预测会受到干扰。

inverted dropout函数做法:举例神经网络 训练阶段前向传播第一层dropout

Z1=np.dot(W1,X)+b1  
A1=relu(Z1)
D1=np.random.rand(A1.shape[0],A2.shape[1]) 
D1=D1<keep_prop
A1=np.multiply(A1,D1) 
A1=A1/keep_prop #确保A1期望不变,这样测试阶段,没有dropout也没有影响
Z2=np.dot(A1,X)+b2
import numpy as np

def relu(x):

    s = np.maximum(0,x)
    
    return s

w1=[[1,2,3],[1,2,3],[4,5,6],[4,5,6]]
x=[[1,2],[1,2],[1,2]]
b=1
z1=np.dot(w1,x)+b
print(z1)

[[ 7 13]
 [ 7 13]
 [16 31]
 [16 31]]

a1=relu(z1)
d1=np.random.rand(a1.shape[0],a1.shape[1])
print(d1)

[[0.58695556 0.41508454]
 [0.16031604 0.24994934]
 [0.10260241 0.8237806 ]
 [0.28117361 0.8992166 ]]

d1=d1<0.8
print(d1)
[[ True  True]
 [ True  True]
 [ True False]
 [ True False]]

a1=np.multiply(a1,d1)
print(a1)
[[ 7 13]
 [ 7 13]
 [16  0]
 [16  0]]

a1=a1/0.8
print(a1)
[[ 8.75 16.25]
 [ 8.75 16.25]
 [20.    0.  ]
 [20.    0.  ]]

train 和 test 的时候,dropout的概率怎么设置:按照原始的论文中,假设dropout的值是 p%,原始神经网络的神经元个数是N,因为在训练的过程中只有 p% 的神经元被保留下来,相应也只有p%的需要被优化的权值保留下来,这导致dropout后sub-network的输出也是整个原始神经网络的输出值的p%。所以,在测试的是时候使用的整个神经网络,我们只需要将每一层的权值矩阵乘以p%就可以保证测试网络的输出期望和训练网络的输出期望值大小一致了。 

注意,如果你使用了tensorflow,则在测试的时候要保持dropout的值为1,即不”抹去“任何神经元。

为什么很少见CNN层加dropout: 这种情况确实不多见,典型的TextCNN模型,就是没有在卷积层加dropout。但是原始论文中确实又指出可以在卷积层做dropout ,只是收益并不是太明显。另外,dropout对于具有大量参数的全连接效果最好,而CNN的卷积层不是全连接,参数不是很多,所以效果不明显。论文还建议如果在CNN中加,最好是在开始的层加dropout,越往后的层,越是要小心加dropout。

神经网络加上dropout后,test loss 比 train loss还要小:正常,在不考虑测试集采样偏差的情况下,这种情况的解释是:每次train loss是在一个batch上计算的,而单个batch又是在一个通过dropout得到的sub-network计算得到的,即相当于在单颗树上得到的train loss;而测试的时候,用的整个神经网络,即相当于在整个”森林“上做预测,结果当然会好一下。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/133117.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 体育赛事视频直播方案「建议收藏」

    体育赛事视频直播方案「建议收藏」播已经走入千家万户。各种领域的直播应用、平台如雨后春笋般的涌现。这当然也包括各种体育赛事的直播如篮球赛事直播,足球赛事直播,排球赛事直播等等。对于体育迷来说,NBA、西甲、英超、德甲、意甲、中超、CBA这些比赛是最熟悉不过的了。作为观赏赛事者有很多选择:Zhibo.tv: 直播TV最精彩的体育娱乐直播平台。乐视体育: 让每个人更好的参与体育。企鹅直播: 最全体育赛事视频直播平台。

    2022年7月23日
    18
  • JS中promise是什么?

    JS中promise是什么?Promise是异步编程的一中解决方案,最早是由社区提出的,es6中正式的将其纳入,他是一个对象,可以获取到异步的操作,他相比传统的回调函数,更加的强大和合理,避免了回调地狱。所谓的Promise,简单的来说就是一个可以存放未来才能结束的任务或者事件。1.Promise实列有三个状态:-pending(进行中)-resolved(成功)-rejected(失败)当要处理某个任务的时候,promise的状态是pending,任务完成是状态就变成了resolved,任务失败状

    2022年4月30日
    93
  • 数据仓库常见建模方法与建模实例演示[通俗易懂]

    数据仓库常见建模方法与建模实例演示[通俗易懂]1.数据仓库建模的目的?为什么要进行数据仓库建模?大数据的数仓建模是通过建模的方法更好的组织、存储数据,以便在性能、成本、效率和数据质量之间找到最佳平衡点。一般主要从下面四点考虑访问性能:能够快速查询所需的数据,减少数据I/O 数据成本:减少不必要的数据冗余,实现计算结果数据复用,降低大数据系统中的存储成本和计算成本 使用效率:改善用户应用体验,提高使用数据的效率 数据质量…

    2022年9月23日
    0
  • c++const用法_const头文件

    c++const用法_const头文件C++——const

    2022年4月21日
    54
  • kfold参数_kinfolk中文版

    kfold参数_kinfolk中文版Kfold是sklearn中的k折交叉验证的工具包fromsklearn.model_selectionimportKFold入参sklearn.model_selection.KFold(n_splits=3,shuffle=False,random_state=None)n_splits:k折交叉验证shuffle:是否每次生成数据集时进行洗牌random_state:仅当洗牌时有用,random_state数值相同时,生成的数据集一致。方法print(kf.get_n_sp

    2022年9月16日
    1
  • Java中Lambda表达式的使用「建议收藏」

    Java中Lambda表达式的使用「建议收藏」此笔记仅用作复习使用:https://www.cnblogs.com/franson-2016/p/5593080.htmlLambda表达式是JavaSE8中一个重要的新特性。lambda表达式允许你通过表达式来代替功能接口。lambda表达式就和方法一样,它提供了一个正常的参数列表和一个使用这些参数的主体(body,可以是一个表达式或一个代码块)。Lambda表达式还增强了集合库。…

    2022年7月8日
    35

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号