支持向量回归(SVR)的详细介绍以及推导算法

支持向量回归(SVR)的详细介绍以及推导算法1SVR背景2SVR原理3SVR数学模型SVR的背景SVR做为SVM的分支从而被提出,一张图介绍SVR与SVM的关系这里两虚线之间的几何间隔r=d∣∣W∣∣\frac{d}{||W||}∣∣W∣∣d​,这里的d就为两虚线之间的函数间隔。(一图读懂函数间隔与几何间隔)这里的r就是根据两平行线之间的距离公式求解出来的SVR的原理SVR与一般线性回归的区别SVR一般线性回归1.数据在间隔带内则不计算损失,当且仅当f(x)与y之间的差距的绝对值大于ϵ\

大家好,又见面了,我是你们的朋友全栈君。

1 SVR背景

2 SVR原理

3 SVR数学模型

  1. SVR的背景
    SVR做为SVM的分支从而被提出,一张图介绍SVR与SVM的关系
    SVR与SVM的联系
    这里两虚线之间的几何间隔r= d ∣ ∣ W ∣ ∣ \frac{d}{||W||} Wd,这里的d就为两虚线之间的函数间隔。
    (一图读懂函数间隔与几何间隔)
    在这里插入图片描述
    这里的r就是根据两平行线之间的距离公式求解出来的
    在这里插入图片描述

  2. SVR的原理

SVR与一般线性回归的区别

SVR 一般线性回归
1.数据在间隔带内则不计算损失,当且仅当f(x)与y之间的差距的绝对值大于 ϵ \epsilon ϵ才计算损失 1.只要f(x)与y不相等时,就计算损失
2.通过最大化间隔带的宽度与最小化总损失来优化模型 2.通过梯度下降之后求均值来优化模型

在这里插入图片描述

原理:SVR在线性函数两侧制造了一个“间隔带”,间距为 ϵ \epsilon ϵ(也叫容忍偏差,是一个由人工设定的经验值),对所有落入到间隔带内的样本不计算损失,也就是只有支持向量才会对其函数模型产生影响,最后通过最小化总损失和最大化间隔来得出优化后的模型。

注:这里介绍一下支持向量的含义:直观解释,支持向量就是对最终w,b的计算起到作用的样本(a>0)

如下图所示, “管道”内样本对应a=0,为非支持向量;
位于“管壁”上的为边界支持向量,0<a< ϵ \epsilon ϵ
位于”管道”之外的为非边界支持向量,a> ϵ \epsilon ϵ(异常检测时,常从非边界支持向量中挑选异常点)
在这里插入图片描述

  1. SVR的数学模型

3.1线性硬间隔SVR

在这里插入图片描述
在这里插入图片描述

3.2线性软间隔SVR
原因:在现实任务中,往往很难直接确定合适的 ϵ \epsilon ϵ ,确保大部分数据都能在间隔带内,而SVR希望所有训练数据都在间隔带内,所以加入松弛变量 ξ \xi ξ ,从而使函数的间隔要求变的放松,也就是允许一些样本可以不在间隔带内。
在这里插入图片描述

引入松弛变量后,这个时候,所有的样本数据都满足条件:

在这里插入图片描述

这就是映入松弛变量后的限制条件,所以也叫——-软间隔SVR

注:对于任意样本xi,如果它在隔离带里面或者边缘上, ξ \xi ξ 都为0;在隔离带上方则为 ξ > 0 , ξ ∗ = 0 \xi>0,\xi^*=0 ξ>0,ξ=0
在隔离带下方则为 ξ ∗ > 0 , ξ = 0 \xi^*>0,\xi=0 ξ>0,ξ=0

在这里插入图片描述

在这里插入图片描述

参数推导:
拉格朗日乘子法(可将约束条件变成无约束的的等式方程)

u i ⩾ 0 , u i ∗ ⩾ 0 , a i ⩾ 0 , a i ∗ ⩾ 0 u_i\geqslant0,u^*_i\geqslant0,a_i\geqslant0,a^*_i\geqslant0 ui0,ui0,ai0,ai0为拉格朗日系数
构建拉格朗日函数:
在这里插入图片描述

3.3非线性(映射,核函数)
在这里插入图片描述
启发:提高维度,低维映射到高维(非线性变线性)

之前的SVR低维数据模型是以内积xi*xj的形式出现:
在这里插入图片描述

现定义一个低维到高维的映射 Φ \varPhi Φ: 来替代以前的内积形式:
在这里插入图片描述

在这里插入图片描述
表示映射到高维特征空间之后的内积

映射到高维的问题:
2维可以映射到5维
但当低维是1000映射到超级高的维度时计算机特征的内积
这个时候从低维到高维运算量会爆炸性增长

由于特征空间维数可能很高,甚至是无穷维,因为直接计算 Φ ( x i ) T Φ ( x j ) \varPhi(x_i)^T\varPhi(x_j) Φ(xi)TΦ(xj) 通常是困难的,这里就要设计到核函数

在这里插入图片描述

结果表明:核函数在低维计算的结果与映射到高维之后内积的结果是一样的

主要改变:非线性转化,主要通过改变内积空间替换成另外一个核函数空间而从而转化到另外一个线性空间

在这里插入图片描述

核函数的隆重出场:核函数是对向量内积空间的一个扩展,使得非线性回归的问题,在经过核函数的转换后可以变成一个近似线性回归的问题
在这里插入图片描述

在这里插入图片描述

  1. 实战案例

代更。。。。。。。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/134863.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • pywin32、win32api、win32gui、win32com、win32con 都是啥?「建议收藏」

    pywin32、win32api、win32gui、win32com、win32con 都是啥?「建议收藏」pywin32、win32api、win32gui、win32com、win32con名称非常类似,特别容易混淆,今天就用600字给大家区分一下文章目录pywin32win32guiwin32conwin32apiwin32com记录时间pywin32pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个模块库。该模块的另一个作用是是通过Python进行COM编程。落地场景:如果你想在Windows操作系统用Python实现自动化工作,pywin32模块经常用到

    2022年10月11日
    0
  • simhash是什么_批复的适用情况

    simhash是什么_批复的适用情况需求是这样的:给出一个文档集合,以及一个领域概念集合,要求根据这些领域概念计算文档的相似性。首先想到的是利用余弦相似性计算。起初得到的集合有大概几万篇文档,如果对每对文档进行余弦相似度计算,会导致时间复杂度较高,于是发现了Simhash方法。由于已经给出了用于计算哈希值的关键词(即这些领域概念),就省去了对文章进行分词的步骤。每篇文档都用其领域概念列表计算出文档的哈希值,并使用这些

    2022年10月1日
    0
  • Spring Boot 核心编程思想-第二部分-读书笔记

    怕什么真理无穷进一步有近一步的欢喜说明本文是Spring Boot核心编程思想记录的笔记,书籍地址:Spring Boot编程思想(核心篇):这篇文档会记录这本我的一些读书的思考,内容可能…

    2022年3月1日
    39
  • 人何以堪

    人何以堪

    2021年8月12日
    63
  • 比较复杂的数据库查询案例,建表语句和测试数据[通俗易懂]

    比较复杂的数据库查询案例,建表语句和测试数据[通俗易懂]比较复杂的数据库查询案例,建表语句和测试数据

    2022年4月23日
    41
  • 香农编码的gui编码_香农编码

    香农编码的gui编码_香农编码香农编码概念:香农编码是是采用信源符号的累计概率分布函数来分配字码的。香农编码是根据香农第一定理直接得出的,指出了平均码长与信息之间的关系,同时也指出了可以通过编码使平均码长达到极限值。香农第一定理是将原始信源符号转化为新的码符号,使码符号尽量服从等概分布,从而每个码符号所携带的信息量达到最大,进而可以用尽量少的码符号传输信源信息。香农编码属于不等长编码,通常将经常出现的消息变成短码,不经常出现的…

    2022年9月11日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号