支持向量回归(SVR)的详细介绍以及推导算法

支持向量回归(SVR)的详细介绍以及推导算法1SVR背景2SVR原理3SVR数学模型SVR的背景SVR做为SVM的分支从而被提出,一张图介绍SVR与SVM的关系这里两虚线之间的几何间隔r=d∣∣W∣∣\frac{d}{||W||}∣∣W∣∣d​,这里的d就为两虚线之间的函数间隔。(一图读懂函数间隔与几何间隔)这里的r就是根据两平行线之间的距离公式求解出来的SVR的原理SVR与一般线性回归的区别SVR一般线性回归1.数据在间隔带内则不计算损失,当且仅当f(x)与y之间的差距的绝对值大于ϵ\

大家好,又见面了,我是你们的朋友全栈君。

1 SVR背景

2 SVR原理

3 SVR数学模型

  1. SVR的背景
    SVR做为SVM的分支从而被提出,一张图介绍SVR与SVM的关系
    SVR与SVM的联系
    这里两虚线之间的几何间隔r= d ∣ ∣ W ∣ ∣ \frac{d}{||W||} Wd,这里的d就为两虚线之间的函数间隔。
    (一图读懂函数间隔与几何间隔)
    在这里插入图片描述
    这里的r就是根据两平行线之间的距离公式求解出来的
    在这里插入图片描述

  2. SVR的原理

SVR与一般线性回归的区别

SVR 一般线性回归
1.数据在间隔带内则不计算损失,当且仅当f(x)与y之间的差距的绝对值大于 ϵ \epsilon ϵ才计算损失 1.只要f(x)与y不相等时,就计算损失
2.通过最大化间隔带的宽度与最小化总损失来优化模型 2.通过梯度下降之后求均值来优化模型

在这里插入图片描述

原理:SVR在线性函数两侧制造了一个“间隔带”,间距为 ϵ \epsilon ϵ(也叫容忍偏差,是一个由人工设定的经验值),对所有落入到间隔带内的样本不计算损失,也就是只有支持向量才会对其函数模型产生影响,最后通过最小化总损失和最大化间隔来得出优化后的模型。

注:这里介绍一下支持向量的含义:直观解释,支持向量就是对最终w,b的计算起到作用的样本(a>0)

如下图所示, “管道”内样本对应a=0,为非支持向量;
位于“管壁”上的为边界支持向量,0<a< ϵ \epsilon ϵ
位于”管道”之外的为非边界支持向量,a> ϵ \epsilon ϵ(异常检测时,常从非边界支持向量中挑选异常点)
在这里插入图片描述

  1. SVR的数学模型

3.1线性硬间隔SVR

在这里插入图片描述
在这里插入图片描述

3.2线性软间隔SVR
原因:在现实任务中,往往很难直接确定合适的 ϵ \epsilon ϵ ,确保大部分数据都能在间隔带内,而SVR希望所有训练数据都在间隔带内,所以加入松弛变量 ξ \xi ξ ,从而使函数的间隔要求变的放松,也就是允许一些样本可以不在间隔带内。
在这里插入图片描述

引入松弛变量后,这个时候,所有的样本数据都满足条件:

在这里插入图片描述

这就是映入松弛变量后的限制条件,所以也叫——-软间隔SVR

注:对于任意样本xi,如果它在隔离带里面或者边缘上, ξ \xi ξ 都为0;在隔离带上方则为 ξ > 0 , ξ ∗ = 0 \xi>0,\xi^*=0 ξ>0,ξ=0
在隔离带下方则为 ξ ∗ > 0 , ξ = 0 \xi^*>0,\xi=0 ξ>0,ξ=0

在这里插入图片描述

在这里插入图片描述

参数推导:
拉格朗日乘子法(可将约束条件变成无约束的的等式方程)

u i ⩾ 0 , u i ∗ ⩾ 0 , a i ⩾ 0 , a i ∗ ⩾ 0 u_i\geqslant0,u^*_i\geqslant0,a_i\geqslant0,a^*_i\geqslant0 ui0,ui0,ai0,ai0为拉格朗日系数
构建拉格朗日函数:
在这里插入图片描述

3.3非线性(映射,核函数)
在这里插入图片描述
启发:提高维度,低维映射到高维(非线性变线性)

之前的SVR低维数据模型是以内积xi*xj的形式出现:
在这里插入图片描述

现定义一个低维到高维的映射 Φ \varPhi Φ: 来替代以前的内积形式:
在这里插入图片描述

在这里插入图片描述
表示映射到高维特征空间之后的内积

映射到高维的问题:
2维可以映射到5维
但当低维是1000映射到超级高的维度时计算机特征的内积
这个时候从低维到高维运算量会爆炸性增长

由于特征空间维数可能很高,甚至是无穷维,因为直接计算 Φ ( x i ) T Φ ( x j ) \varPhi(x_i)^T\varPhi(x_j) Φ(xi)TΦ(xj) 通常是困难的,这里就要设计到核函数

在这里插入图片描述

结果表明:核函数在低维计算的结果与映射到高维之后内积的结果是一样的

主要改变:非线性转化,主要通过改变内积空间替换成另外一个核函数空间而从而转化到另外一个线性空间

在这里插入图片描述

核函数的隆重出场:核函数是对向量内积空间的一个扩展,使得非线性回归的问题,在经过核函数的转换后可以变成一个近似线性回归的问题
在这里插入图片描述

在这里插入图片描述

  1. 实战案例

代更。。。。。。。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/134863.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • NVIC和EXTI

    NVIC和EXTINVIC:NestVectorInterruptController,嵌套中断向量控制器,是用来管理中断嵌套的,核心任务在于其优先级的管理。NVIC给每个中断赋予先占优先级(抢占优先级)和次占优先级(响应优先级)。CM3内核支持256个中断,其中包含了16个内核中断和240个外部中断,并且具有256级的可编程中断设置。但STM32并没有使用CM3内核的全部东西,而是只用了它的一部分,STM

    2022年5月28日
    65
  • STL源代码分析——STL算法remove删除算法

    STL源代码分析——STL算法remove删除算法

    2021年9月11日
    50
  • 移位寄存器实现序列检测-Verilog「建议收藏」

    移位寄存器实现序列检测-Verilog「建议收藏」//移位寄存器实现10010检测moduleDetect_10010( inputclk, inputrst_n, inputdata_in, outputreg[4:0]data_out, outputflag);always@(posedgeclkornegedgerst_n)begin if(!rst_n) data_out<=5’d0; else data_out<=({data_out[3:0],data_in

    2022年7月16日
    9
  • css 去掉超链接样式「建议收藏」

    css 去掉超链接样式「建议收藏」我们可以用CSS语法来控制超链接的形式、颜色变化,为什么链接一定要使用下划线和颜色区分呢?其主要原因主要是考虑到1、视力差的人2、色盲的人。。。下面我们做一个这样的链接:未被点击时超链接文字无下划线,显示为蓝色;当鼠标在链接上时有下划线,链接文字显示为红色;当点击链接后,链接无下划线,显示为绿色。实现方法很简单,在源代码的和之间加上如下的CSS语法控制: …

    2022年7月19日
    59
  • Postgresql+Springboot yml基本使用[通俗易懂]

    Postgresql+Springboot yml基本使用[通俗易懂]一、Postgresql介绍PostgreSQL是一种特性非常齐全的自由软件的对象-关系型数据库管理系统(ORDBMS),是以加州大学计算机系开发的POSTGRES,4.2版本为基础的对象关系型数据库管理系统。POSTGRES的许多领先概念只是在比较迟的时候才出现在商业网站数据库中。PostgreSQL支持大部分的SQL标准并且提供了很多其他现代特性,如复杂查询、外键、触发器、视图、事务完整性、多版本并发控制等。同样,PostgreSQL也可以用许多方法扩展,例如通过增加新的数据类型、函数、操作符、聚集函

    2025年7月14日
    0
  • 多线程锁有几种类型_线程互斥和同步的区别

    多线程锁有几种类型_线程互斥和同步的区别一、同步与互斥的概念  现代操作系统基本都是多任务操作系统,即同时有大量可调度实体在运行。在多任务操作系统中,同时运行的多个任务可能:都需要访问/使用同一种资源;多个任务之间有依赖关系,某个任务的运行依赖于另一个任务。【同步】:  是指散步在不同任务之间的若干程序片断,它们的运行必须严格按照规定的某种先后次序来运行,这种先后次序依赖于要完成的特定的任务。最基本的场景就是:两个或两个以…

    2022年10月24日
    1

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号