matlab支持向量回归,支持向量回归 MATLAB代码

matlab支持向量回归,支持向量回归 MATLAB代码支持向量回归MATLAB代码(2013-05-3116:30:35)标签:教育支持向量机和神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。大量仿真证实,支持向量机的泛化能力强于神经网络,而且能避免神经网络的固有缺陷——训练结果不稳定。本源码可以用于线性回归、非线性回归、非线性函数拟合、数据建模、预测、分类等多种应…

大家好,又见面了,我是你们的朋友全栈君。

支持向量回归 MATLAB代码

(2013-05-31 16:30:35)

标签:

教育

支持向量机和神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。大量仿真证实,支持向量机的泛化能力强于神经网络,而且能避免神经网络的固有缺陷——训练结果不稳定。本源码可以用于线性回归、非线性回归、非线性函数拟合、数据建模、预测、分类等多种应用场合。

function

[Alpha1,Alpha2,Alpha,Flag,B]=SVMNR(X,Y,Epsilon,C,TKF,Para1,Para2)

%%

% SVMNR.m

% Support Vector Machine for Nonlinear Regression

% All rights reserved

%%

% 支持向量机非线性回归通用程序

% 程序功能:

% 使用支持向量机进行非线性回归,得到非线性函数y=f(x1,x2,…,xn)的支持向量解析式,

% 求解二次规划时调用了优化工具箱的quadprog函数。本函数在程序入口处对数据进行了

% [-1,1]的归一化处理,所以计算得到的回归解析式的系数是针对归一化数据的,仿真测

% 试需使用与本函数配套的Regression函数。

% 输入参数列表

% X 输入样本原始数据,n×l的矩阵,n为变量个数,l为样本个数

% Y 输出样本原始数据,1×l的矩阵,l为样本个数

% Epsilon ε不敏感损失函数的参数,Epsilon越大,支持向量越少

% C 惩罚系数,C过大或过小,泛化能力变差

% TKF Type of Kernel Function 核函数类型

% TKF=1 线性核函数,注意:使用线性核函数,将进行支持向量机的线性回归

% TKF=2 多项式核函数

% TKF=3 径向基核函数

% TKF=4 指数核函数

% TKF=5 Sigmoid核函数

% TKF=任意其它值,自定义核函数

% Para1 核函数中的第一个参数

% Para2 核函数中的第二个参数

% 注:关于核函数参数的定义请见Regression.m和SVMNR.m内部的定义

% 输出参数列表

% Alpha1 α系数

% Alpha2 α*系数

% Alpha 支持向量的加权系数(α-α*)向量

% Flag 1×l标记,0对应非支持向量,1对应边界支持向量,2对应标准支持向量

% B 回归方程中的常数项

%————————————————————————–

%%

%———————–数据归一化处理————————————–

nntwarn off

X=premnmx(X);

Y=premnmx(Y);

%%

%%

%———————–核函数参数初始化————————————

switch TKF

case 1

%线性核函数 K=sum(x.*y)

%没有需要定义的参数

case 2

%多项式核函数 K=(sum(x.*y)+c)^p

c=Para1;%c=0.1;

p=Para2;%p=2;

case 3

%径向基核函数 K=exp(-(norm(x-y))^2/(2*sigma^2))

sigma=Para1;%sigma=6;

case 4

%指数核函数 K=exp(-norm(x-y)/(2*sigma^2))

sigma=Para1;%sigma=3;

case 5

%Sigmoid核函数 K=1/(1+exp(-v*sum(x.*y)+c))

v=Para1;%v=0.5;

c=Para2;%c=0;

otherwise

%自定义核函数,需由用户自行在函数内部修改,注意要同时修改好几处!

%暂时定义为 K=exp(-(sum((x-y).^2)/(2*sigma^2)))

sigma=Para1;%sigma=8;

end

%%

%%

%———————–构造K矩阵——————————————-

l=size(X,2);

K=zeros(l,l);%K矩阵初始化

for i=1:l

for j=1:l

x=X(:,i);

y=X(:,j);

switch TKF%根据核函数的类型,使用相应的核函数构造K矩阵

case 1

K(i,j)=sum(x.*y);

case 2

K(i,j)=(sum(x.*y)+c)^p;

case 3

K(i,j)=exp(-(norm(x-y))^2/(2*sigma^2));

case 4

K(i,j)=exp(-norm(x-y)/(2*sigma^2));

case 5

K(i,j)=1/(1+exp(-v*sum(x.*y)+c));

otherwise

K(i,j)=exp(-(sum((x-y).^2)/(2*sigma^2)));

end

end

end

%%

%%

%————构造二次规划模型的参数H,Ft,Aeq,Beq,lb,ub————————

%支持向量机非线性回归,回归函数的系数,要通过求解一个二次规划模型得以确定

Ft=[Epsilon*ones(1,l)-Y,Epsilon*ones(1,l)+Y];

Aeq=[ones(1,l),-ones(1,l)];

Beq=0;

ub=C*ones(2*l,1);

%%

%%

%————–调用优化工具箱quadprog函数求解二次规划————————

OPT=optimset;

OPT.LargeScale=’off’;

OPT.Display=’off’;

%%

%%

%————————整理输出回归方程的系数——————————

Alpha1=(Gamma(1:l,1))’;

Alpha2=(Gamma((l+1):end,1))’;

Alpha=Alpha1-Alpha2;

Flag=2*ones(1,l);

%%

%%

%—————————支持向量的分类———————————-

Err=0.000000000001;

for i=1:l

AA=Alpha1(i);

BB=Alpha2(i);

if (abs(AA-0)<=Err)&&(abs(BB-0)<=Err)

Flag(i)=0;%非支持向量

end

if (AA>Err)&&(AA<=ERR)

Flag(i)=2;%标准支持向量

end

if (abs(AA-0)<=Err)&&(BB>Err)&&(BB

Flag(i)=2;%标准支持向量

end

if (abs(AA-C)<=Err)&&(abs(BB-0)<=Err)

Flag(i)=1;%边界支持向量

end

if (abs(AA-0)<=Err)&&(abs(BB-C)<=Err)

Flag(i)=1;%边界支持向量

end

end

%%

%%

%——————–计算回归方程中的常数项B———————————

B=0;

counter=0;

for i=1:l

AA=Alpha1(i);

BB=Alpha2(i);

if (AA>Err)&&(AA<=ERR)

%计算支持向量加权值

SUM=0;

for j=1:l

if Flag(j)>0

switch TKF

case 1

SUM=SUM+Alpha(j)*sum(X(:,j).*X(:,i));

case 2

SUM=SUM+Alpha(j)*(sum(X(:,j).*X(:,i))+c)^p;

case 3

SUM=SUM+Alpha(j)*exp(-(norm(X(:,j)-X(:,i)))^2/(2*sigma^2));

case 4

SUM=SUM+Alpha(j)*exp(-norm(X(:,j)-X(:,i))/(2*sigma^2));

case 5

SUM=SUM+Alpha(j)*1/(1+exp(-v*sum(X(:,j).*X(:,i))+c));

otherwise

SUM=SUM+Alpha(j)*exp(-(sum((X(:,j)-X(:,i)).^2)/(2*sigma^2)));

end

end

end

b=Y(i)-SUM-Epsilon;

B=B+b;

counter=counter+1;

end

if (abs(AA-0)<=Err)&&(BB>Err)&&(BB

SUM=0;

for j=1:l

if Flag(j)>0

switch TKF

case 1

SUM=SUM+Alpha(j)*sum(X(:,j).*X(:,i));

case 2

SUM=SUM+Alpha(j)*(sum(X(:,j).*X(:,i))+c)^p;

case 3

SUM=SUM+Alpha(j)*exp(-(norm(X(:,j)-X(:,i)))^2/(2*sigma^2));

case 4

SUM=SUM+Alpha(j)*exp(-norm(X(:,j)-X(:,i))/(2*sigma^2));

case 5

SUM=SUM+Alpha(j)*1/(1+exp(-v*sum(X(:,j).*X(:,i))+c));

otherwise

SUM=SUM+Alpha(j)*exp(-(sum((X(:,j)-X(:,i)).^2)/(2*sigma^2)));

end

end

end

b=Y(i)-SUM+Epsilon;

B=B+b;

counter=counter+1;

end

end

if counter==0

B=0;

else

B=B/counter;

end

function

y=Regression(Alpha,Flag,B,X,Y,TKF,Para1,Para2,x)

%————————————————————————–

% Regression.m

% 与SVMNR.m函数配套使用的仿真测试函数

% 函数功能:

% 本函数相当于支持向量得到的回归方程的解析方程,输入一个待测试的列向量x,得到一

% 个对应的输出值y

%————————————————————————–

% 输入参数列表

% Alpha 支持向量的加权系数(α-α*)向量

% Flag 1×l标记,0对应非支持向量,1对应边界支持向量,2对应标准支持向量

% B 回归方程中的常数项

% X 输入样本原始数据,n×l的矩阵,n为变量个数,l为样本个数

% Y 输出样本原始数据,1×l的矩阵,l为样本个数

% Para1 核函数中的第一个参数

% Para2 核函数中的第二个参数

% 注:关于核函数参数的定义请见Regression.m和SVMNR.m内部的定义

% x 待测试的原始数据,n×1的列向量

% 输出参数列表

% y 仿真测试的输出值

%%

%———————–核函数参数初始化————————————

switch TKF

case 1

%线性核函数 K=sum(x.*y)

%没有需要定义的参数

case 2

%多项式核函数 K=(sum(x.*y)+c)^p

c=Para1;%c=0.1;

p=Para2;%p=2;

case 3

%径向基核函数 K=exp(-(norm(x-y))^2/(2*sigma^2))

sigma=Para1;%sigma=6;

case 4

%指数核函数 K=exp(-norm(x-y)/(2*sigma^2))

sigma=Para1;%sigma=3;

case 5

%Sigmoid核函数 K=1/(1+exp(-v*sum(x.*y)+c))

v=Para1;%v=0.5;

c=Para2;%c=0;

otherwise

%自定义核函数,需由用户自行在函数内部修改,注意要同时修改好几处!

%暂时定义为 K=exp(-(sum((x-y).^2)/(2*sigma^2)))

sigma=Para1;%sigma=8;

end

%%

%%

%———————-数据归一化处理—————————————

[X,minX,maxX]=premnmx(X);

x=2*((x-minX)./(maxX-minX))-1;

[Y,minY,maxY]=premnmx(Y);

%%

%%

%———————计算仿真测试的输出值———————————-

l=length(Alpha);

SUM=0;

for i=1:l

if Flag(i)>0

switch TKF

case 1

SUM=SUM+Alpha(i)*sum(x.*X(:,i));

case 2

SUM=SUM+Alpha(i)*(sum(x.*X(:,i))+c)^p;

case 3

SUM=SUM+Alpha(i)*exp(-(norm(x-X(:,i)))^2/(2*sigma^2));

case 4

SUM=SUM+Alpha(i)*exp(-norm(x-X(:,i))/(2*sigma^2));

case 5

SUM=SUM+Alpha(i)*1/(1+exp(-v*sum(x.*X(:,i))+c));

otherwise

SUM=SUM+Alpha(i)*exp(-(sum((x-X(:,i)).^2)/(2*sigma^2)));

end

end

end

y=SUM+B;

%%

%%

%——————–反归一化处理——————————————-

y=postmnmx(y,minY,maxY);

分享:

a4c26d1e5885305701be709a3d33442f.png喜欢

0

a4c26d1e5885305701be709a3d33442f.png赠金笔

加载中,请稍候……

评论加载中,请稍候…

发评论

登录名: 密码: 找回密码 注册记住登录状态

昵   称:

评论并转载此博文

a4c26d1e5885305701be709a3d33442f.png

发评论

以上网友发言只代表其个人观点,不代表新浪网的观点或立场。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/134929.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 碰撞检测经典解决方案

    碰撞检测经典解决方案碰撞检测在3D游戏中至关重要,好的碰撞检测要求人物在场景中可以平滑移动,遇到一定高度内的台阶可以自动上去,而过高的台阶则把人挡住,遇到斜率较小的斜坡可以上去,斜率过大则把人挡住,在各种前进方向被挡住的

    2022年7月3日
    35
  • vue 解决跨域问题(开发环境)[通俗易懂]

    vue 解决跨域问题(开发环境)[通俗易懂]一、什么是跨域问题同源:域名,协议,端口均相同不同源就是跨域,比如你的前端为localhost:9528,后端为localhost:8080,此时前端去访问后端接口就会产生跨域问题,因为端口不同。这里不详细讲,可参考百度百科-同源策略。二、如何解决跨域问题前后端都可以解决,这里仅提供vue的前端跨域解决方案:前端vue.config.js配置如下,然后保证在你访问后端接口时加个前缀/api。devServer:{port:port,open:false,ov

    2022年9月17日
    0
  • 使用PageOffice实现文档(word,excel,pdf)在线预览编辑[通俗易懂]

    使用PageOffice实现文档(word,excel,pdf)在线预览编辑[通俗易懂]最近发现一款不错的插件的PageOffice,地址是:http://www.zhuozhengsoft.com/Technical/他可以实现word,excel、pdf在线预览以及在线编辑。虽然商用的话需要收费,但是有免费的试用版,在实现自己毕业设计或是做样品的时候是一个不错的选择。他同时支持java\c#\php.一旦有了正真的项目花钱再买也可以。同时自己也可以熟悉如何使用。接着下面实现

    2022年5月3日
    129
  • thinkCMF—-列表页跳转

    thinkCMF—-列表页跳转

    2021年6月11日
    88
  • 洗牌算法思路_随机洗牌算法

    洗牌算法思路_随机洗牌算法1.背景    笔试时,遇到一个算法题:差不多是在n个不同的数中随机取出不重复的m个数。洗牌算法是将原来的数组进行打散,使原数组的某个数在打散后的数组中的每个位置上等概率的出现,刚好可以解决该问题。2.洗牌算法    由抽牌、换牌和插牌衍生出三种洗牌算法,其中抽牌和换牌分别对应Fisher-YatesShuffle和Knuth-DurstenfeldShhuffle算法。 …

    2022年9月21日
    0
  • html制作进销存,手把手教你定制属于自己的进销存软件

    html制作进销存,手把手教你定制属于自己的进销存软件接着上一步的继续来更新,上一步设置了入库单和出库单的选择录入问题下面来说一下入库单和出库单的数据保存转移问题在入库单和出库单分别插入两个按钮,然后再模块里写入一下代码Sub入库单录入()a=Sheet3.Range(“a65536”).End(xlUp).RowIfSheet3.Range(“b2”)=””ThenMsgBox”请选择录入供应商名称!”ExitSubEndI…

    2022年5月31日
    39

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号