卷积神经网络(CNN)与深度卷积神经网络(DCNN)

卷积神经网络(CNN)与深度卷积神经网络(DCNN)作为小白,看到DCNN,一直想知道与CNN的区别,也没找到明确的说法,以下是自己的一点想法,欢迎指正!目录一、CNN与DCNN二、基于pytorch的实现1.LeNet-52.AlexNet一、CNN与DCNN卷积神经网络,如:LeNet深度卷积神经网络,如:AlexNetAlexNet与LeNet结构类似,但使用了更多的卷积层和更大的参数空间来拟合大规模数据集ImageNet。卷积神经网络就是含卷积层的网络。AlexNet是浅层神经网络和深度神经网络的分界..

大家好,又见面了,我是你们的朋友全栈君。

作为小白,看到DCNN,一直想知道与CNN的区别,也没找到明确的说法,以下是自己的一点想法,欢迎指正!

 

目录

一、CNN与DCNN

二、基于pytorch的实现

1.LeNet-5

2.AlexNet


一、CNN与DCNN

卷积神经网络,如:LeNet

深度卷积神经网络,如:AlexNet

AlexNet是第一个现代深度卷积网络模型,首次使用了许多现代深度卷积网络的技术方法,比如,采用ReLu作为非线性激活函数,使用Dropout防止过拟合,是用数据增强提高模型准确率,使用GPU进行并行训练等。

AlexNet与LeNet结构类似,但使用了更多的卷积层和更大的参数空间来拟合大规模数据集ImageNet。

卷积神经网络就是含卷积层的网络。AlexNet是浅层神经网络和深度神经网络的分界线。

(选自书《动手学深度学习》、《神经网络与深度学习》)

二、基于pytorch的实现

参考卷积神经网络之 – Lenet

LeNet、AlexNet模型实现(pytorch)

1.LeNet-5:

卷积神经网络(CNN)与深度卷积神经网络(DCNN)

来自《神经网络与深度学习》

Input -> conv1 (6) -> pool1 -> conv2 (16) -> pool2 -> fc3 (120) -> fc4 (84) -> fc5 (10) -> softmax

代码实现与原文存在一定差异

import torch
import torch.nn as nn
import torch.nn.functional as func

class LeNet5(nn.Module):
    def __init__(self,num_classes, grayscale=False):
        """
              num_classes: 分类的数量
              grayscale:是否为灰度图
              """
        super(LeNet5, self).__init__()

        self.grayscale = grayscale
        self.num_classes = num_classes

        if self.grayscale:  # 可以适用单通道和三通道的图像
            in_channels = 1
        else:
            in_channels = 3

        self.conv1 =self.conv1 = nn.Conv2d(in_channels, 6, kernel_size=5)
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, num_classes)

    def forward(self, x):
        x = func.max_pool2d(self.conv1(x), 2)   # 原始的模型使用的是 平均池化
        x = func.max_pool2d(self.conv2(x), 2)
        x = x.view(x.size(0), -1)
        x = self.fc3(self.fc2(self.fc1(x)))
        x = func.softmax(x,dim=1)
        return x

#(最后模拟了一个输入,输出一个分类器运算后 10 个 softmax 概率值)
num_classes = 10  # 分类数目
grayscale = True  # 是否为灰度图
data = torch.rand((1, 1, 32, 32))
print("input data:\n", data, "\n")
model = LeNet5(num_classes, grayscale)
x= model(data)
print(x)

卷积神经网络(CNN)与深度卷积神经网络(DCNN)

2.AlexNet

 

preview

卷积神经网络(CNN)与深度卷积神经网络(DCNN)

来自《神经网络与深度学习》

 

假设输入为32*32大小图像,代码实现与上文所述存在一定差异。

import torch
import torch.nn as nn
class AlexNet(nn.Module):
    def __init__(self,num_classes, grayscale=False):

        super(AlexNet, self).__init__()
        self.grayscale = grayscale
        self.num_classes = num_classes
        if self.grayscale:  # 可以适用单通道和三通道的图像
            in_channels = 1
        else:
            in_channels = 3

        self.features = nn.Sequential(
            nn.Conv2d(in_channels, 96, kernel_size=11,padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(96, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(256, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2),
        )
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 3 * 3, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, 10),
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), 256 * 3 * 3)
        x = self.classifier(x)
        return x

#最后模拟了一个输入,输出一个分类器运算后的值
num_classes = 10  # 分类数目
grayscale = True  # 是否为灰度图
data = torch.rand((1, 1, 32, 32))
print("input data:\n", data, "\n")
model = AlexNet(num_classes,grayscale)
x=model(data)
print(x)

卷积神经网络(CNN)与深度卷积神经网络(DCNN)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/135108.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Linux操作系统基础

    Linux操作系统基础Linux简介Linux是一种自由和开放源码的操作系统,存在着许多不同的Linux版本,但它们都使用了Linux内核。Linux可安装在各种计算机硬件设备中,比如手机、平板电脑、路由器、台式计算机Linux介绍Linux出现于1991年,是由芬兰赫尔辛基大学学生LinusTorvalds和后来加入的众多爱好者共同开发完成Linux特点多用户,多任务,丰富的网络功能…

    2022年4月29日
    34
  • jsp用户信息管理系统

    jsp用户信息管理系统实现功能1.用户信息注册2.用户信息新增3.用户信息列表4.用户信息删除5.用户信息修改6.用户登录项目包结构:sqlsever数据库结构USE[MyDB]GO/******Object:Table[dbo].[users]ScriptDate:2020/11/119:26:07******/SETANSI_NULLSONGOSETQUOTED_IDENTIFIERONGOSETANSI_PADDINGONGOCREATETABL

    2022年10月17日
    0
  • 绕过“请在微信客户端打开链接”如微师下载视频等。

    绕过“请在微信客户端打开链接”如微师下载视频等。UA(UserAgent)的问题。微信内置的浏览器设置了特定的UA,在网页加载时会识别这个UA修改UA:浏览器不同地方不同360浏览器:F2点击右上角”更多工具”-“网络状态”找到下面的用户代理(UserAgent),取消选择Selectautomatically(自动选择),然后在输入框中加入“MicroMessenger”就可以了。goole:我用的是Chrome,其他浏览器也大同小异。在你打开需要的网页链接之前F12打开开发者…

    2022年5月18日
    74
  • 高德地图-设置点标注的文本标签「建议收藏」

    高德地图-设置点标注的文本标签「建议收藏」1、问题背景   高德地图中,设置选中位置,并自定义图标和文字提示2、实现源码 高德地图-设置点标注的文本标签 varmap=newAMap.Map(“container”,{ resizeEnable:true, center:[115.397428,41.90

    2022年5月22日
    170
  • 京东自助代挂_京东任务代挂

    京东自助代挂_京东任务代挂京东自动签到-代挂效果展示说明效果展示说明JD签到网站:点我进入京东签到网站    JD签到,东东农场等活动自动帮做,每天都会自动浇水。每天都有200-1000豆豆不等入账,相当于坐等收钱,JD只要出了新活动网站都会同步更新,不需要担心任何活动,每天都会帮你自动完成。…

    2022年9月16日
    0
  • 程序员日记

    程序员日记混迹程序圈yi

    2022年5月25日
    41

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号