卷积神经网络(CNN)与深度卷积神经网络(DCNN)

卷积神经网络(CNN)与深度卷积神经网络(DCNN)作为小白,看到DCNN,一直想知道与CNN的区别,也没找到明确的说法,以下是自己的一点想法,欢迎指正!目录一、CNN与DCNN二、基于pytorch的实现1.LeNet-52.AlexNet一、CNN与DCNN卷积神经网络,如:LeNet深度卷积神经网络,如:AlexNetAlexNet与LeNet结构类似,但使用了更多的卷积层和更大的参数空间来拟合大规模数据集ImageNet。卷积神经网络就是含卷积层的网络。AlexNet是浅层神经网络和深度神经网络的分界..

大家好,又见面了,我是你们的朋友全栈君。

作为小白,看到DCNN,一直想知道与CNN的区别,也没找到明确的说法,以下是自己的一点想法,欢迎指正!

 

目录

一、CNN与DCNN

二、基于pytorch的实现

1.LeNet-5

2.AlexNet


一、CNN与DCNN

卷积神经网络,如:LeNet

深度卷积神经网络,如:AlexNet

AlexNet是第一个现代深度卷积网络模型,首次使用了许多现代深度卷积网络的技术方法,比如,采用ReLu作为非线性激活函数,使用Dropout防止过拟合,是用数据增强提高模型准确率,使用GPU进行并行训练等。

AlexNet与LeNet结构类似,但使用了更多的卷积层和更大的参数空间来拟合大规模数据集ImageNet。

卷积神经网络就是含卷积层的网络。AlexNet是浅层神经网络和深度神经网络的分界线。

(选自书《动手学深度学习》、《神经网络与深度学习》)

二、基于pytorch的实现

参考卷积神经网络之 – Lenet

LeNet、AlexNet模型实现(pytorch)

1.LeNet-5:

卷积神经网络(CNN)与深度卷积神经网络(DCNN)

来自《神经网络与深度学习》

Input -> conv1 (6) -> pool1 -> conv2 (16) -> pool2 -> fc3 (120) -> fc4 (84) -> fc5 (10) -> softmax

代码实现与原文存在一定差异

import torch
import torch.nn as nn
import torch.nn.functional as func

class LeNet5(nn.Module):
    def __init__(self,num_classes, grayscale=False):
        """
              num_classes: 分类的数量
              grayscale:是否为灰度图
              """
        super(LeNet5, self).__init__()

        self.grayscale = grayscale
        self.num_classes = num_classes

        if self.grayscale:  # 可以适用单通道和三通道的图像
            in_channels = 1
        else:
            in_channels = 3

        self.conv1 =self.conv1 = nn.Conv2d(in_channels, 6, kernel_size=5)
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, num_classes)

    def forward(self, x):
        x = func.max_pool2d(self.conv1(x), 2)   # 原始的模型使用的是 平均池化
        x = func.max_pool2d(self.conv2(x), 2)
        x = x.view(x.size(0), -1)
        x = self.fc3(self.fc2(self.fc1(x)))
        x = func.softmax(x,dim=1)
        return x

#(最后模拟了一个输入,输出一个分类器运算后 10 个 softmax 概率值)
num_classes = 10  # 分类数目
grayscale = True  # 是否为灰度图
data = torch.rand((1, 1, 32, 32))
print("input data:\n", data, "\n")
model = LeNet5(num_classes, grayscale)
x= model(data)
print(x)

卷积神经网络(CNN)与深度卷积神经网络(DCNN)

2.AlexNet

 

preview

卷积神经网络(CNN)与深度卷积神经网络(DCNN)

来自《神经网络与深度学习》

 

假设输入为32*32大小图像,代码实现与上文所述存在一定差异。

import torch
import torch.nn as nn
class AlexNet(nn.Module):
    def __init__(self,num_classes, grayscale=False):

        super(AlexNet, self).__init__()
        self.grayscale = grayscale
        self.num_classes = num_classes
        if self.grayscale:  # 可以适用单通道和三通道的图像
            in_channels = 1
        else:
            in_channels = 3

        self.features = nn.Sequential(
            nn.Conv2d(in_channels, 96, kernel_size=11,padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(96, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(256, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2),
        )
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 3 * 3, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, 10),
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), 256 * 3 * 3)
        x = self.classifier(x)
        return x

#最后模拟了一个输入,输出一个分类器运算后的值
num_classes = 10  # 分类数目
grayscale = True  # 是否为灰度图
data = torch.rand((1, 1, 32, 32))
print("input data:\n", data, "\n")
model = AlexNet(num_classes,grayscale)
x=model(data)
print(x)

卷积神经网络(CNN)与深度卷积神经网络(DCNN)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/135108.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Hadoop集群搭建教程(详细)「建议收藏」

    Hadoop集群搭建教程(详细)「建议收藏」需要的安装包:  1.jdk压缩包  2.hadoop压缩包请前往我的github上下载相关安装包开始搭建hadoop集群一.使用VMvare创建两个虚拟机,我使用的是ubuntu16.04版本的因为默认的虚拟机主机名都是ubuntu,所以为了便于虚拟机的识别,创建完成虚拟机后我们对虚拟机名进行修改,我们把用于主节点的虚拟机名称设为master(按自己的喜好创建),把用于从节点的虚拟机名称…

    2025年8月5日
    3
  • mysql fsync_mysql分组提交和实时fsync

    mysql fsync_mysql分组提交和实时fsyncGroupcommitandrealfsync分组提交和实时fsyncDuringtherecentmonthsIveseenfewcasesofcustomersupgradingtoMySQL5.0andhavingseriousperformanceslowdowns,upto10timesincertaincases.Wha…

    2022年5月31日
    40
  • java基本数据类型总结

    java基本数据类型总结详解一、八种基本数据类型常识1.1、基本常识表对于上图有以下几点需要注意:java八种基本数据类型分为四类八种,四类分别为整型、浮点型、布尔型、字符型;八种分别为byte、short、int、long、float、double、boolean、char;java八种基本数据类型的字节数:分别为1、2、4、8个字节;1字节(byte、boolean)、2字节(short、char)、4字节(int、float)、8字节(long、double);整数的默认类型为int,浮点数的默认类型为do

    2022年7月7日
    21
  • 数据挖掘与数据分析[通俗易懂]

    数据挖掘与数据分析[通俗易懂]一、数据挖掘和数据分析概述数据挖掘和数据分析都是从数据中提取一些有价值的信息,二者有很多联系,但是二者的侧重点和实现手法有所区分。数据挖掘和数据分析的不同之处:1、在应用工具上,数据挖掘一般要通过自己的编程来实现需要掌握编程语言;而数据分析更多的是借助现有的分析工具进行。2、在行业知识方面,数据分析要求对所从事的行业有比较深的了解和理解,并且能够将数据与自身的业务紧密结合起来;而数…

    2022年6月5日
    29
  • Docker 开启2375端口提供外部访问

    Docker 开启2375端口提供外部访问1、编辑docker.service#vim/usr/lib/systemd/system/docker.service在ExecStart=/usr/bin/dockerd-current后增加-Htcp://0.0.0.0:2375-Hunix://var/run/docker.sock[Unit]Description=DockerApplicationContainerEngineDocumentation=https://docs.docker.c..

    2022年5月9日
    58
  • Struts2—->action

    Struts2—->action

    2021年8月19日
    49

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号