ARM汇编:数据处理指令集:MOV、ADD、ADDS、ADC、SUB、SUBS、SBC、RSB、MUL、AND、ORR、EOR、BIC、CMP、TST、TEQ、LSL、LSR、ASR、RORV

ARM汇编:数据处理指令集:MOV、ADD、ADDS、ADC、SUB、SUBS、SBC、RSB、MUL、AND、ORR、EOR、BIC、CMP、TST、TEQ、LSL、LSR、ASR、RORVARM指令集——数据处理指令数据处理指令有:MOV、ADD、ADDS、ADC、SUB、SUBS、SBC、RSB、MUL、AND、ORR、EOR、BIC、CMP、TST、TEQ、LSL、LSR、ASR、RORV数据处理指令语法<操作{<cond>}{S}><Rd>,<Rn&gt…

大家好,又见面了,我是你们的朋友全栈君。

                  ARM指令集——数据处理指令

数据处理指令有:

MOV、ADD、ADDS、ADC、SUB、

SUBS、SBC、RSB、MUL、AND、

ORR、EOR、BIC、CMP、TST、

TEQ、LSL、LSR、ASR、RORV

数据处理指令语法

<操作{<cond>}{S}> <Rd>, <Rn>, <Operand2>
<操作码> <目标寄存器Rd> <第一操作寄存器Rn> <第二操作数Operand2>
;第一个位置必须是寄存器,第二操作数可以是寄存器,也可以是立即数

数据传送指令  MOV

mov r1, #0x1        ;r1 = 0x1    0x1 是立即数
mov r2, r1          ;r2 = r1 
mvn r3, r2          ;r3 = ~r2
mov r1, 0xffffff00  ;0xffffff00 不是立即数,只是编译器在编译阶段对其进行了替换
mvn r1, 0x000000ff  ;替换的指令

;一条数据传送指令 mov reg, #n mov reg占用 bit[31:12],bit[11:0]留给立即数使用,因此立即数自包含2^12个
;一个立即数由 bits[8:0]循环右移 2 * bits[11:9]得到。(一个八位的数循环右移偶数次得到)
;立即数的本质是包含于指令中的数,占用指令本身的空间

加法指令 ADD

;加法指令执行时,若没有进位 CPSR 'C' 位置 0
mov r0, #1
mov r1, #1
add r2, r1, r0  ;r2 = r1 + r0
add r2, r1, #2  ;r2 = r1 + 2

 数据操作对CPSR的影响 

;默认情况下,数据处理指令不影响条件码标志位,但可以选择通过添加“S”来影响标志位。
mov r1, #0mov r2, #-1
adds r3, r1, r2 

带进位的加法指令 ADC

;两个64位数相加,第一个64位的低32位放在 r0,高位放到 r1,第二个64位数的低32位放在 r2 高32位放在 r3
;编写代码实现两个64位数的和,结果的低32位放在 r4 高32位放在 r5
mov r0, #0xfffffffe  ;第一个数的低32位
mov r1, #1  ;第一个数的高32位
mov r2, #0x5  ;第二个数的低32位 
mov r3, #1  ;第二个数的高32位
adds r4, r0, r2 
adc r5, r1, r3  ; adc运算的实质是 r5 = r1 + r3 + 'C'  'C'位 CPSR 进位标志

减法指令 SUB

;减法指令执行时,没有借位时 CPSR 'C' 位置 1
mov r0, #5
mov r1, #3
sub r2, r0, r1  ;r2 = r0 - r1

带借位的减法指令 SBC

mov r0, #1  ;第一个数的低32位
mov r1, #3  ;第一个数的高32位
mov r2, #3  ;第二个数的低32位
mov r3, #1  ;第二个输的高32位
subs r4, r0, r2  
sbc r5, r1, r3

逆向减法指令 RSB

mov r0, #3
rsb r1, r0, #5  ;r1 = 5 - r0

乘法指令 MUL

;为了提高效率,任何乘法指令不可以使用立即数
mov r0, #3
mov r1, #5
mov r2, r0, r1  ;r2 = r0 * r1

乘——累加指令 MLA

mla r3 ,r0, r1, r2  ;r3 = (r0 * r1) + r2

逻辑与指令 AND

mov r0, #0xf0
mov r1, #0x0f
and r2, r0, r1  ;r2 = r0 & r1

逻辑或指令 ORR

ORR指令的格式为:ORR{条件}{S} 目的寄存器,操作数1,操作数2

ORR指令用于在两个操作数上进行逻辑或运算,并把结果放置到目的寄存器中。操作数1应该是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令常用于设置操作数1的某些位。
指令示例:ORR R0,R0,#3;该指令设置R0的0、1位,其余位保持不变。

orr r0,r0,#0xd3

0xd3=1101 0111
将r0与0xd3作算数或运算,然后将结果返还给r0,即把r0的bit[7:6]和bit[4]和bit[2:0]置为1

mov r0, #0xf0
mov r1, #0x0f
orr r2, r0, r1 ;r2 = r0 | r1

逻辑异或运算指令 EOR

mov r0, #0xf0
mov r1, #0x0f
eor r2, r0, r1  ;r2 = r0 ^ r1

位清零指令 BIC
指令格式:BIC{cond}{S} Rd,Rn,operand2 
BIC指令将Rn 的值与操作数operand2 的反码按位逻辑”与”,结果存放到目的寄存器Rd 中。指令示例:BIC R0,R0,#0x0F ;将R0最低4位清零,其余位不变。

mov r0, #0xff
bic r0, r0, #0xf  ;第二个操作数的每一位为 1 就把第一个操作数对应的位清零

 比较指令 CMP

cmp(compare)指令进行比较两个操作数的大小

例:cmp oprd1,oprd2

为第一个操作减去第二个操作数,但不影响第两个操作数的值,它影响flag的CF,ZF,OF,AF,PF

我们怎么判断大小呢?若执行指令后

(1)ZF

ZF=1 这个简单,则说明两个数相等,因为zero为1说明结果为0。

(2)CF

当无符号时:

CF=1 则说明了有进位或借位,cmp是进行的减操作,故可以看出为借位,所以,此时oprd1<oprd2

CF=0 则说明了无借位,但此时要注意ZF是否为0,若为0,则说明结果不为0,故此时oprd1>oprd2

当有符号时:

若SF=0,OF=0 则说明了此时的值为正数,没有溢出,可以直观的看出,oprd1>oprd2

若SF=1,OF=0 则说明了此时的值为负数,没有溢出,则为oprd1<oprd2

若SF=0,OF=1 则说明了此时的值为正数,有溢出,可以看出oprd1<oprd2

若SF=1,OF=1则说明了此时的值为负数,有溢出,可以看出oprd1>oprd2

最后两个可以作出这种判断的原因是,溢出的本质问题:

两数同为正,相加,值为负,则说明溢出

两数同为负,相加,值为正,则说明溢出

故有,正正得负则溢出,负负得正则溢出

补充: 两数相减,同号,则不溢出;两数为异号,结果与减数符号相同,则溢出。

;实质是一条减法指令
;没有目标register,用来比较两个数是否相等,结果放到 CPSR 的 'Z' 位判断
mov r0, #2
mov r1, #1
cmp r0, r1

 位测试指令 TST

;实质是与运算 常用于用来测试某一位或某几位是 0 还是 1,结果通过 CPSR 的 'Z' 位判断
tst r0, #0x3

 相等测试指令 TEQ

;实质是异或运算,测试两个数是否相等,两个数相等时异或结果位 0,通过 CPSR 的 'Z' 位判断
teq r0, r1

 移位指令 LSL、LSR、ASR、ROR

;需要与mov配合,不能够单独使用
mov r0, #0xff
mov r1, r0, lsl #4  ;将 r0 逻辑左移 4 位放入 r1 中
;LSL 逻辑左移:高位移出,低位补零
;LSR 逻辑右移:低位移出,高位补零
;ASR 算是右移:低位移出,高位补符号位
;ROR 循环右移:低位移出,高位补低位移出位

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/135201.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • IOS安全、逆向、反编译1-越狱知识讲解[通俗易懂]

    IOS安全、逆向、反编译1-越狱知识讲解[通俗易懂]之前开发了一个对安全性要求比较高的APP,所以对安全、逆向和反编译有了一些认识,最近有时间就想系统的把这些知识做一个整理。今天就开始把我的学习过程记录下来。iOS越狱环境搭建在学习iOS越狱之前,我们当然需要一台iOS设备,由于现在基本上都是64位系统为主,所以最好是使用ARM64架构的设备,因此首先我们的手机至少需要iPhone5S或者之后的iPhone设备,平板至少是iPadAir、…

    2022年5月8日
    90
  • 常见分布式文件存储介绍、选型比较、架构设计

    常见分布式文件存储介绍、选型比较、架构设计Hello,我是瓜哥:之前在进行对接存储项目的时候,对公司内部使用的文件系统进行了梳理,当前公司内部使用的文件系统有GlusterFS,FastDFS等,由于文件系统在海量小文件和高并发之下性能急剧下降,性能遭遇瓶颈,因此打算建设分布式对象存储平台。下面对市面上比较流行的非结构化文件存储产品进行相关整理和比较。分布式文件存储的来源在这个数据爆炸的时代,产生的数据量不断地在攀升,从GB,…

    2022年6月10日
    45
  • MFC进度条控件(六)

    MFC进度条控件(六)程序功能:点击按键进度条前进到满格。(一)初始化//TODO:在此添加额外的初始化代码 m_progress.SetRange32(0,100);//设置进度条最小和最大值按键函数入口双击按键(二)按键函数voidCMFCday5ADlg::OnBnClickedButton1(){ //TODO:在此添加控件通知处理程序代码 SetTimer(1,100,NULL);//设置定时器1,每次计时100毫秒就定时到 GetDlgItem(IDC_BUTTON1)-&g

    2022年7月27日
    6
  • viper4android脉冲样本,V4A脉冲反馈样本第一弹 爽爆「建议收藏」

    煤油,积分3926,距离下一级还需1074积分NFS_359|煤油煤油,积分3926,距离下一级还需1074积分|6电梯直达发表于2015-1-218:14:34|只看楼主|只看大图|倒序浏览|阅读模式|收藏本帖NFS_359|煤油煤油,积分3926,距离下一级还需1074积分主题:19|帖子:1016|积分:3926该用户从未签到当前离线本帖最后由…

    2022年4月17日
    194
  • okio分析

    okio分析Okio是一个对原有的java.io和java.nio进行改进的IO库,使IO操作更加高效和方便。Okio的高效主要体现在三个方面:一它对数据进行了分块处理,这样在大数据IO的时候可以以块为单位进行IO,这可以提高IO的吞吐率。二它对这些数据块使用链表进行管理,这可以仅通过移动“指针”就进行数据的管理,而不用真正去处理数据,而且对扩容来说也十分方便。三对闲置的块进行管理,通过一个块池(Se

    2022年6月2日
    120
  • lamda运算学习笔记

    lamda运算学习笔记lamda->Llamda演算至少从表面上看,有着这样一种企图:将所有运算操作,以及自然数都抽象成“函数”(再一次见识到函数这个概念的伟大)。下面简单的介绍下lamda演算。lamda演算的原始定义看起来比较无聊:(Lx.[fx])a=fa上式用熟悉的概念翻译,就是自变量为x的函数f(x),代入x=a,得f(a)但是这里有

    2022年5月30日
    32

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号