岭回归、LASSO回归(包括公式推导)[通俗易懂]

岭回归、LASSO回归(包括公式推导)[通俗易懂]前面的两篇文章比较清楚浅显的介绍了线性回归、多项式回归,并了解到其实多项式回归也可以看作是一种特殊的线性回归形式,也就是说回归的核心就是线性回归。其原理都是最小二乘法,这是一种很简单、很方便的算法,但也有它的局限性,所以本文讲述另外的回归方式岭回归、LASSO回归,作为一个补充,解决最小二乘法的一些缺点。最小二乘法的局限性:                 …

大家好,又见面了,我是你们的朋友全栈君。

前面的两篇文章比较清楚浅显的介绍了线性回归多项式回归,并了解到其实多项式回归也可以看作是一种特殊的线性回归形式,也就是说回归的核心就是线性回归。其原理都是最小二乘法,这是一种很简单、很方便的算法,但也有它的局限性,所以本文讲述另外的回归方式岭回归、LASSO回归,作为一个补充,解决最小二乘法的一些缺点。

最小二乘法的局限性:

                                                            \varpi = (X^{T}X)^{-1}X^{T}Y

上面是最小二乘法的核心算法,通过公式我们可以看到该公式成立的条件就是(X^{T}X)不等于0,也就是(X^{T}X)能求逆(可以用linalg.det(X)等方法判断),而当变量之间的相关性较强(多重共线性),或者m(特征数)大于n(样本数),上式中的X不是满秩矩阵。那就会使得(X^{T}X)的结果趋近于0,造成拟合参数的数值不稳定性增加(参数间的差距变化很大),这也就是普通最小二乘法的局限性。

下面通过希尔伯尔矩阵来验证最小二乘法的局限性(希尔伯特矩阵每列之间存在很强的相关性 ):

"""生成 10x10 的希尔伯特矩阵
"""
from scipy.linalg import hilbert
x = hilbert(10)

"""希尔伯特转置矩阵与原矩阵相乘
"""
import numpy as np
mat = np.linalg.det(np.matrix(x).T*np.matrix(x))  # det计算行列式 dot计算一维内积或多维矩阵相乘
print(mat)	# x.T*x 趋近于0

皮尔逊相关系数通常用于度量两个变量 XY 之间的线性相关程度,其值介于 -11 之间。其中,数值越趋近于 1 表示相关程度越高,反之趋近于 -1 则表示线性相关度越低。

在pandas中提供了直接计算相关系数的方法 .corr(),我们再来验证一下列之间的相关性:

pd.DataFrame(x, columns=['x%d'%i for i in range(1,11)]).corr()

岭回归、LASSO回归(包括公式推导)[通俗易懂]

可以看到,列之间的相关性是相当的大。

综上所示,普通最小二乘法带来的局限性,导致许多时候都不能直接使用其进行线性回归拟合,尤其是下面两种情况:

  • 数据集的列(特征)数量 > 数据量(行数量),即 X 不是列满秩。

  • 数据集列(特征)数据之间存在较强的线性相关性,即模型容易出现过拟合。

岭回归:

岭回归推导:

为了解决上述两种情况出现的问题,岭回归(Ridge Regression)应运而生。岭回归可以被看作为一种改良后的最小二乘法,它通过向损失中添加L_{2}正则项(2-范数)有效防止模型出现过拟合,且有助于解决非满秩条件下求逆困难的问题,从而提升模型的解释能力。岭回归推导过程如下:

岭回归、LASSO回归(包括公式推导)[通俗易懂]

岭回归、LASSO回归(包括公式推导)[通俗易懂]

岭回归、LASSO回归(包括公式推导)[通俗易懂]

减少不重要的参数项,统计学中也叫“缩减”。更深入的解释,可以查看官方一点的文档。

通过scilit-learn提供的方法可以很方便的使用岭回归。

岭回归拟合:

sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver=’auto’, random_state=None)

  • alpha: 正则化强度,默认为 1.0,对应公式中的 λ。正则化强度; 必须是正浮点数。 正则化改善了问题的条件并减少了估计的方差。 较大的值指定较强的正则化。 Alpha对应于其他线性模型(如Logistic回归或LinearSVC)中的C^{-1}。 如果传递数组,则假定惩罚被特定于目标。 因此,它们必须在数量上对应。

  • fit_intercept: 默认为 True,计算截距项。如果设置为false,则不会在计算中使用截距(例如,数据预期已经居中)。

  • normalize: 默认为 False,不针对数据进行标准化处理。如果为真,则回归X将在回归之前被归一化。 当fit_intercept设置为False时,将忽略此参数。 当回归量归一化时,注意到这使得超参数学习更加鲁棒,并且几乎不依赖于样本的数量。 相同的属性对标准化数据无效。然而,如果你想标准化,请在调用normalize = False训练估计器之前,使用preprocessing.StandardScaler处理数据。

  • copy_X: 默认为 True,即使用数据的副本进行操作,防止影响原数据。

  • max_iter: 最大迭代次数,默认为 None。共轭梯度求解器的最大迭代次数。 对于’sparse_cg’和’lsqr’求解器,默认值由scipy.sparse.linalg确定。 对于’sag’求解器,默认值为1000。

  • tol: 数据解算精度。

  • solver: 根据数据类型自动选择求解器。{‘auto’,’svd’,’cholesky’,’lsqr’,’sparse_cg’,’sag’}

  • random_state: 随机数发生器。

更多的参数中文详解可以参考这里

比较重要的就是alpha参数的选择了,其代表了正则化强度,我们可以通过类似网格搜索的单层方式来得到不同的拟合结果(其中y值为随机创建的w乘上矩阵得到的):

w = np.random.randint(2,10,10) # 随机生成 w 系数
y_temp = np.matrix(x) * np.matrix(w).T # 计算 y 值
y = np.array(y_temp.T)[0] #将 y 值转换成 1 维行向量  相当于给矩阵创建一个真实值

"""不同 alpha 参数拟合
"""
alphas = np.linspace(-3,2,20)
coefs = []
for a in alphas:
    ridge = Ridge(alpha=a, fit_intercept=False)
    ridge.fit(x, y)
    coefs.append(ridge.coef_)

"""绘制不同 alpha 参数结果
"""
from matplotlib import pyplot as plt
plt.plot(alphas, coefs) # 绘制不同 alpha 参数下的 w 拟合值 这里一共10条
plt.scatter(np.linspace(0,0,10), parameters[0]) # 普通最小二乘法拟合的 w 值放入图中
plt.xlabel('alpha')
plt.ylabel('w')
plt.title('Ridge Regression')
plt.show()

岭回归、LASSO回归(包括公式推导)[通俗易懂]

由图可见,当 alpha 取值越大时,正则项主导收敛过程,各 w 系数趋近于 0。当 alpha 很小时,各 w 系数波动幅度变大。 所以可以选择收敛基本平稳的alpha点。

LASSO回归:

当我们使用普通最小二乘法进行回归拟合时,如果特征变量间的相关性较强,则可能会导致某些 w 系数很大,而另一些系数变成很小的负数。所以,我们通过上文中的岭回归添加 L2 正则项来解决这个问题。

与岭回归相似的是,LASSO 回归同样是通过添加正则项来改进普通最小二乘法,不过这里添加的是 L1 正则项。即:

岭回归、LASSO回归(包括公式推导)[通俗易懂]

这里关于L1、L2没有做很详细的解释,如果需要可以参考这里,简单说下:

L1:L1正则化最大的特点是能稀疏矩阵,进行庞大特征数量下的特征选择

L2:L2正则能够有效的防止模型过拟合,解决非满秩下求逆困难的问题

LASSO回归拟合:

sklearn.linear_model.Lasso(alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection=’cyclic’)

  • alpha: 正则化强度,默认为 1.0。

  • fit_intercept: 默认为 True,计算截距项。

  • normalize: 默认为 False,不针对数据进行标准化处理。

  • precompute: 是否使用预先计算的 Gram 矩阵来加速计算。

  • copy_X: 默认为 True,即使用数据的副本进行操作,防止影响原数据。

  • max_iter: 最大迭代次数,默认为 1000。

  • tol: 数据解算精度。

  • warm_start: 重用先前调用的解决方案以适合初始化。

  • positive: 强制系数为正值。

  • random_state: 随机数发生器。

  • selection: 每次迭代都会更新一个随机系数。

"""使用LASSO 回归拟合并绘图
"""
from sklearn.linear_model import Lasso

alphas = np.linspace(-2,2,10)
lasso_coefs = []
for a in alphas:
	lasso = Lasso(alpha=a,fit_intercept=False)
	lasso.fit(x,y)
	lasso_coefs.append(lasso.coef_)

plt.plot(alphas,lasso_coefs)	# 绘制不同alpha下的 w 拟合值
plt.scatter(np.linspace(0,0,10),parameters[0])	# 普通最小二乘法的 w 放入图中
plt.xlabel('alpha')
plt.ylabel('w')
plt.title('Lasso Regression')
plt.show()

岭回归、LASSO回归(包括公式推导)[通俗易懂]

由图可见,当 alpha 取值越大时,正则项主导收敛过程,各 w 系数趋近于 0。当 alpha 很小时,各 w 系数波动幅度变大。

 

 

参考文章:

https://blog.csdn.net/jinping_shi/article/details/52433975

https://blog.csdn.net/qq_36523839/article/details/82024623

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/135454.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 前端开发必备站点汇总

    常用前端手册:http://caniuse.com/http://www.w3school.com.cn/http://www.runoob.com/http://www.css88.com/

    2021年12月28日
    40
  • pycharm 安装包总失败原因及解决办法「建议收藏」

    pycharm 安装包总失败原因及解决办法「建议收藏」对于pycharm安装包失败的原因借解决办法在pycharm中安装包安装失败:Non-zeroexitcode(1)可能是在库中找不到对应版本。解决:cmd中使用命令:pipinstall包名-ihttps://pypi.douban.com/simple另一种总是安装失败,也有可能是pip版本过低。更新pip,在pycharm->setting->ProjectInterpreter进行升级。如果pip总是更新失败,可以重装anaconda。(我是用anaconda解

    2022年5月17日
    1.2K
  • Apache中 RewriteRule 规则参数介绍

    Apache中 RewriteRule 规则参数介绍Apache中RewriteRule规则参数介绍 摘要: Apache模块mod_rewrite提供了一个基于正则表达式分析器的重写引擎来实时重写URL请求。它支持每个完整规则可以拥有不限数量的子规则以及附加条件规则的灵活而且强大的URL操作机制。这里着重介绍RewriteRule规则以及参数说明。Apache模块mod_rewrite提供了一个基于正则表达式分析器的重写引擎来实…

    2022年5月14日
    30
  • printer和typewriter_java类中可以定义类吗

    printer和typewriter_java类中可以定义类吗打印流       字符打印流(针对文本进行操作:PrintWriter)       字节打印流(PrintStream和标准输出流有关系System.out;)   PrintWriter:属于输出流 1)只能写数据(只能针对目的地文件进行操作),不能读数据(不能针对源文件进行操作) 2)可以针对文件直接进行操作  如果一个类中的构造方法里面有File对象或者String类型数…

    2022年8月10日
    4
  • webpack的性能优化_webpack不是内部或外部命令

    webpack的性能优化_webpack不是内部或外部命令webpack版本过高,会出现很多问题,因此可以降低版本高度1.可以直接覆盖原版本,可以输入`cnpmiwebpack需要降低的版本-g比如我们要降低到’3.6.0’’cnpmiwebpack@3.6.0-g’2.卸载当前版本,在重新下载需要的版本卸载命令:’npmuninstallwebpack-g’如果是局部安装,也可以在文件夹中找到node-modules中webpack模块删除。安装命令:’npminstallwebpack@3.6.0-g’

    2022年8月10日
    3
  • 积分中值定理_三个中值定理的公式

    积分中值定理_三个中值定理的公式设$f:[a,b]\to\mathbf{R}$是区间$[a,b]$上的连续函数,其中$a,b\in\mathbf{R}$且$a<b$.则存在$a<\varepsilon<b$,使得

    2022年8月4日
    3

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号