dropout和bagging_dropout总结「建议收藏」

dropout和bagging_dropout总结「建议收藏」1.伯努利分布:伯努利分布亦称“零一分布”、“两点分布”。称随机变量X有伯努利分布,参数为p(02.dropout其实也是一种正则化,因为也把参数变稀疏(l1,原论文)和变小(l2,caffe实际实现)。只有极少的训练样本可用时,Dropout不会很有效。因为Dropout是一个正则化技术,它减少了模型的有效容量。为了抵消这种影响,我们必须增大模型规模。不出意外的话,使用Dropout时较佳…

大家好,又见面了,我是你们的朋友全栈君。

1.伯努利分布:伯努利分布亦称“零一分布”、“两点分布”。称随机变量X有伯努利分布, 参数为p(0

2.

dropout其实也是一种正则化,因为也把参数变稀疏(l1,原论文)和变小(l2,caffe实际实现)。只有极少的训练样本可用时,Dropout不会很有效。因为Dropout是一个正则化技术,它减少了模 型的有效容量。为了抵消这种影响,我们必须增大模型规模。不出意外的话,使 用Dropout时较佳验证集的误差会低很多,但这是以更大的模型和更多训练算法的迭 代次数为代价换来的。对于非常大的数据集,正则化带来的泛化误差减少得很小。在 这些情况下,使用Dropout和更大模型的计算代价可能超过正则化带来的好处。http://www.dataguru.cn/article-10459-1.html

idea:想利用集成学习bagging的思想,通过训练多个不同的模型来预测结果。但是神经网络参数量巨大,训练和测试网络需要花费大量的时间和内存。

功能:1.解决过拟合

2.加快训练速度

为什么呢work:

1.dropout类似于多模型融合,多模型融合本身能解决解决一下过拟合

因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。dropout掉不同的隐藏神经元就类似在训练不同的网络(随机删掉一半隐藏神经元导致网络结构已经不同),整个dropout过程就相当于 对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。https://zhuanlan.zhihu.com/p/23178423

2.减少神经元之间复杂的共适应关系: 因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。(这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况)。 迫使网络去学习更加鲁棒的特征 (这些特征在其它的神经元的随机子集中也存在)。换句话说假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的模式(鲁棒性)。(这个角度看 dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高)https://zhuanlan.zhihu.com/p/23178423

3.正则化。让参数稀疏和让参数变小

4.加噪声。观点十分明确,就是对于每一个dropout后的网络,进行训练时,相当于做了Data Augmentation,因为,总可以找到一个样本,使得在原始的网络上也能达到dropout单元后的效果。 比如,对于某一层,dropout一些单元后,形成的结果是(1.5,0,2.5,0,1,2,0),其中0是被drop的单元,那么总能找到一个样本,使得结果也是如此。这样,每一次dropout其实都相当于增加了样本。https://blog.csdn.net/stdcoutzyx/article/details/49022443

caffe的实现:

论文中的实现:

训练,用伯努利分布生成概率,以概率p打开,概率1-p关闭,打开就是直接把值正常传给下一层,关闭就是不进行正向传播,传给下一层的值是0

测试,用伯努利分布分成概率,将每个权重乘以概率p进行衰减

caffe实现:

训练,用伯努利分布生成概率,以概率p打开,概率1-p关闭。打开的同时要乘以一个系数,相当于把权重放大。关闭还是和论文一样。

测试,直接把上一层的数值传递给下一层,其实也可以直接不用这一层

为什么要这么去实现:

https://blog.csdn.net/u012702874/article/details/45030991解答了为什么要在测试的时候rescale,因为如果直接使用dropout丢弃,其实就是选择了其中的n*p个神经元,所有参数乘以p其实也就是相当于选择了n*p,数量级是至少是一样的

至于caffe为什么要放大,https://stackoverflow.com/questions/50853538/caffe-why-dropout-layer-exists-also-in-deploy-testing这个也没能很好解释,只能说是等效的

前向传播:

dropout和bagging_dropout总结「建议收藏」

dropout和bagging_dropout总结「建议收藏」

反向传播(注意:不进行反向传播,其实只是不求梯度,把上一层的梯度直接传给下一层):

如果进行反向传播,还是以概率p传播梯度,概率1-p不传梯度给下一层,也就是0

如果不进行反向传播,直接把上一层的梯度传给下一层

dropout和bagging_dropout总结「建议收藏」

dropout与bagging的关系:

在Bagging的情况下,所有模型是独立 的。在Dropout的情况下,模型是共享参数的,其中每个模型继承的父神经网络参 数的不同子集。参数共享使得在有限可用的内存下代表指数数量的模型变得可能。 在Bagging的情况下,每一个模型在其相应训练集上训练到收敛。在Dropout的情况下,通常大部分模型都没有显式地被训练,通常该模型很大,以致到宇宙毁灭都不 能采样所有可能的子网络。取而代之的是,可能的子网络的一小部分训练单个步骤,参数共享导致剩余的子网络能有好的参数设定。这些是仅有的区别。除了这些,Dropout与Bagging算法一样。例如,每个子网络中遇到的训练集确实是替换采样的 原始训练集的一个子集。

关于Dropout的一个重要见解是,通过随机行为训练网络并平均多个随机决定进 行预测,通过参数共享实现了Bagging的一种形式。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/136275.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • Mybatis二级缓存_java一级缓存二级缓存

    Mybatis二级缓存_java一级缓存二级缓存在mybatis中,如果要使用二级缓存,就必须使javabean类实现Serializable(序列号)接口未实现序列化接口报错:关于为什么要实现序列化,我浏览了这个兄弟的文章为什么pojo类要实现序列化

    2025年11月20日
    3
  • Pycharm如何上传、更新本地代码到github[通俗易懂]

    Pycharm如何上传、更新本地代码到github[通俗易懂]原文:https://blog.csdn.net/zhaiyujia15195383763/article/details/87773771文章目录一、Pycharm上传本地代码到github1、点击左上角的File,选择Settings,然后选择VersionControl,点击出现的GitHub,点击“Addacco…

    2022年8月29日
    6
  • Java程序员是不是已经烂大街了?「建议收藏」

    Java程序员是不是已经烂大街了?「建议收藏」宽进严出,有人看一看面试题都可以混水摸鱼进去,进去容易,坚持下来的人很少,大部分都是代码搬运工,这些人其实不是严格的JAVA程序员,非常容易转到其他方面,比如做前端、测试、运维、产品、运营。能够坚持做5年以上JAVA开发的人不多。真正JAVA开发人员很缺,JAVA代码搬运工很多。这位网友说:中级程序员,高级程序员那就更缺了“烂大街”我可以认为是褒奖吧,行业在发展,从…

    2022年7月8日
    108
  • 狂神说Linux_狂神说docker笔记

    狂神说Linux_狂神说docker笔记Linux在服务器端,很多大型项目都是部署在Linux服务器上利用VM + Centos7搭建本地Linux系统你可以使用 man [命令]来查看各个命令的使用文档,如 :man cp。概念云服务器就是一个远程电脑Linux中一切皆文件根目录/,所有的文件都挂载在这个节点下/bin:bin是Binary的缩写, 这个目录存放着最经常使用的命令。/boot: 这里存放的是启动Linux时使用的一些核心文件,包括一些连接文件以及镜像文件。/dev : dev是Device(设备

    2022年8月8日
    6
  • android之onCreateOptionsMenu失效,按菜单键无反应

    做点名app的时候,由于教师端和学生端UI相似,所以用了一套UI框架,结果修改一番之后,点击菜单键无反应,也就是下面的onCreateOptionsMenu不执行了,  @Override public boolean onCreateOptionsMenu(Menu menu) { getMenuInflater().inflate(R.menu.main, menu);

    2022年3月11日
    232
  • 安卓软件开发_应用程序UI组件意外停止

    安卓软件开发_应用程序UI组件意外停止——成功属于耐得住寂寞的人,接下来几篇将讲述Android应用程序的原理及术语,可能会比较枯燥。如果能够静下心来看,相信成功将属于你。引言为了后面的例子做准备,本篇及接下来几篇将介绍Andro

    2022年8月4日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号