dropout和bagging_dropout总结「建议收藏」

dropout和bagging_dropout总结「建议收藏」1.伯努利分布:伯努利分布亦称“零一分布”、“两点分布”。称随机变量X有伯努利分布,参数为p(02.dropout其实也是一种正则化,因为也把参数变稀疏(l1,原论文)和变小(l2,caffe实际实现)。只有极少的训练样本可用时,Dropout不会很有效。因为Dropout是一个正则化技术,它减少了模型的有效容量。为了抵消这种影响,我们必须增大模型规模。不出意外的话,使用Dropout时较佳…

大家好,又见面了,我是你们的朋友全栈君。

1.伯努利分布:伯努利分布亦称“零一分布”、“两点分布”。称随机变量X有伯努利分布, 参数为p(0

2.

dropout其实也是一种正则化,因为也把参数变稀疏(l1,原论文)和变小(l2,caffe实际实现)。只有极少的训练样本可用时,Dropout不会很有效。因为Dropout是一个正则化技术,它减少了模 型的有效容量。为了抵消这种影响,我们必须增大模型规模。不出意外的话,使 用Dropout时较佳验证集的误差会低很多,但这是以更大的模型和更多训练算法的迭 代次数为代价换来的。对于非常大的数据集,正则化带来的泛化误差减少得很小。在 这些情况下,使用Dropout和更大模型的计算代价可能超过正则化带来的好处。http://www.dataguru.cn/article-10459-1.html

idea:想利用集成学习bagging的思想,通过训练多个不同的模型来预测结果。但是神经网络参数量巨大,训练和测试网络需要花费大量的时间和内存。

功能:1.解决过拟合

2.加快训练速度

为什么呢work:

1.dropout类似于多模型融合,多模型融合本身能解决解决一下过拟合

因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。dropout掉不同的隐藏神经元就类似在训练不同的网络(随机删掉一半隐藏神经元导致网络结构已经不同),整个dropout过程就相当于 对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。https://zhuanlan.zhihu.com/p/23178423

2.减少神经元之间复杂的共适应关系: 因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。(这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况)。 迫使网络去学习更加鲁棒的特征 (这些特征在其它的神经元的随机子集中也存在)。换句话说假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的模式(鲁棒性)。(这个角度看 dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高)https://zhuanlan.zhihu.com/p/23178423

3.正则化。让参数稀疏和让参数变小

4.加噪声。观点十分明确,就是对于每一个dropout后的网络,进行训练时,相当于做了Data Augmentation,因为,总可以找到一个样本,使得在原始的网络上也能达到dropout单元后的效果。 比如,对于某一层,dropout一些单元后,形成的结果是(1.5,0,2.5,0,1,2,0),其中0是被drop的单元,那么总能找到一个样本,使得结果也是如此。这样,每一次dropout其实都相当于增加了样本。https://blog.csdn.net/stdcoutzyx/article/details/49022443

caffe的实现:

论文中的实现:

训练,用伯努利分布生成概率,以概率p打开,概率1-p关闭,打开就是直接把值正常传给下一层,关闭就是不进行正向传播,传给下一层的值是0

测试,用伯努利分布分成概率,将每个权重乘以概率p进行衰减

caffe实现:

训练,用伯努利分布生成概率,以概率p打开,概率1-p关闭。打开的同时要乘以一个系数,相当于把权重放大。关闭还是和论文一样。

测试,直接把上一层的数值传递给下一层,其实也可以直接不用这一层

为什么要这么去实现:

https://blog.csdn.net/u012702874/article/details/45030991解答了为什么要在测试的时候rescale,因为如果直接使用dropout丢弃,其实就是选择了其中的n*p个神经元,所有参数乘以p其实也就是相当于选择了n*p,数量级是至少是一样的

至于caffe为什么要放大,https://stackoverflow.com/questions/50853538/caffe-why-dropout-layer-exists-also-in-deploy-testing这个也没能很好解释,只能说是等效的

前向传播:

dropout和bagging_dropout总结「建议收藏」

dropout和bagging_dropout总结「建议收藏」

反向传播(注意:不进行反向传播,其实只是不求梯度,把上一层的梯度直接传给下一层):

如果进行反向传播,还是以概率p传播梯度,概率1-p不传梯度给下一层,也就是0

如果不进行反向传播,直接把上一层的梯度传给下一层

dropout和bagging_dropout总结「建议收藏」

dropout与bagging的关系:

在Bagging的情况下,所有模型是独立 的。在Dropout的情况下,模型是共享参数的,其中每个模型继承的父神经网络参 数的不同子集。参数共享使得在有限可用的内存下代表指数数量的模型变得可能。 在Bagging的情况下,每一个模型在其相应训练集上训练到收敛。在Dropout的情况下,通常大部分模型都没有显式地被训练,通常该模型很大,以致到宇宙毁灭都不 能采样所有可能的子网络。取而代之的是,可能的子网络的一小部分训练单个步骤,参数共享导致剩余的子网络能有好的参数设定。这些是仅有的区别。除了这些,Dropout与Bagging算法一样。例如,每个子网络中遇到的训练集确实是替换采样的 原始训练集的一个子集。

关于Dropout的一个重要见解是,通过随机行为训练网络并平均多个随机决定进 行预测,通过参数共享实现了Bagging的一种形式。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/136275.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • android的开机动画,设置安卓开机动画、开机logo

    android的开机动画,设置安卓开机动画、开机logo我们要修改的是system>media文件夹下的bootanimation.zip(手机开机动画)这个文件先来讲讲这个文件结构:该zip解压后得到两个文件,第一个目录存放了开机时播放的图片(图为佳域G3原厂的动绘图片包),见下图:图片编号001,002,…….010这些是用来控制图片播放顺序的。第二个desc.txt的文本文档存放的数据和文字用来控制播放图片的速度(帧速)和播放方…

    2022年5月15日
    39
  • 【转载】这才是真正的表扩展方案

    【转载】这才是真正的表扩展方案

    2021年11月20日
    50
  • CentOS 7搭建SMB服务「建议收藏」

    第一步:安装samba服务》yuminstallsamba第二步:启动samba服务》systemctlstartsmb查看samba的状态》systemctlstatussmb看到Active就说明在运行中了第三步:关闭防火墙》systemctlstopfirewalld.service//停止服务》systemctldisablefirewalld.service//关…

    2022年4月13日
    267
  • Python中两List的Sql左连接实现

    内联接比较容易,之前做过,用两List的关键字进行if过滤即可;左(右)连接稍微麻烦一些,但稍思考一下,还是可以满足条件的。/Users/nisj/PycharmProjects/BiDataProc/Demand/hadoopStat/SqlLeftJoin.py#-*-coding=utf-8-*-importsysreload(sys)sys.setdefaultenc

    2022年4月16日
    79
  • 金山词霸2007升级v10.0.0.4

    金山词霸2007升级v10.0.0.4词霸2007不但产品功能更加完善,而且在用户的体验方面也做了很多改进。首先,词霸07收录了150余本权威词典,70余个专业词库,同时支持28种常备资料线实时更新,让您随时拥有奥运知识、常用工具(货币单位等)等最新的资料;其次全面支持简体中文、英文、日文查词功能,满足更多用户需求;值得一提的是,词霸07收录了与朗文、牛津、韦氏齐名四大词典的《美国传统词典》最新版,英汉、英英双解,包含96000余词条

    2022年7月15日
    15
  • 使用burpsuite抓包和改包[通俗易懂]

    使用burpsuite抓包和改包[通俗易懂]第一次使用到这个工具,是在上web安全课的时候,老师让我们进行CTF实验,采用burpsuite进行抓包改包,才发现这个工具的强大。1burpsuite工具下载官网链接:https://portswigger.net/burp/下载之后直接安装即可,比较简单2建立burpsuite和浏览器的连接打开burpsuite工具,在proxy中的Option下,看到对应的Interface…

    2022年6月1日
    224

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号