Matlab 非线性有约束规划的粒子群算法「建议收藏」

Matlab 非线性有约束规划的粒子群算法「建议收藏」粒子群算法的基本认识简单介绍:通过群体中个体之间的协作和信息共享来寻找最优解。适用于连续函数极值问题,对于非线性,多峰问题均有较强的全局搜索能力。主要掌握两点1.粒子的速度和位置速度代表移动的快慢,位置代表移动的方向。位置对应每个自变量,速度一般设置为变量范围的10%~20%。2.粒子的更新规则具体实例下面展示matlab代码。clear;close;clc%%约束条件和目标函数构建fun=@(x)x(1)^2+x(2)^2+x(3)^2+8;bind1

大家好,又见面了,我是你们的朋友全栈君。

Matlab 非线性有约束规划的粒子群算法


粒子群算法的基本认识

简单介绍:通过群体中个体之间的协作和信息共享来寻找最优解。

适用于连续函数极值问题,对于非线性,多峰问题均有较强的全局搜索能力。

主要掌握两点

1.粒子的速度和位置

速度代表移动的快慢,位置代表移动的方向。
位置对应每个自变量,速度一般设置为变量范围的10%~20%。

2.粒子的更新规则

在这里插入图片描述

具体实例

在这里插入图片描述


matlab代码
clear;close;clc
%% 约束条件和目标函数构建
fun = @(x) x(1)^2 + x(2)^2 + x(3)^2 + 8;
bind1 = @(x) x(1)^2 - x(2) + x(3)^2 >= 0;
bind2 = @(x) x(1) + x(2)^2 + x(3)^2 <= 20;
% 不太适合等式约束
ekc = 1e-10;
bind3 = @(x) abs(-x(1) - x(2)^2 + 2) <= ekc;
bind4 = @(x) abs(x(2) + 2*x(3)^2 - 3) <= ekc;

%% 初始化
popsize = 500; % 粒子个数
dim = 3; % 维度
max_iter = 100; % 最大迭代次数
xlimit_max = [2 3 20]'; % 由等式约束推出位置边界
xlimit_min = zeros(dim,1); 
vlimit_max = 1*ones(dim,1);
vlimit_min = -1*ones(dim,1);
w = 0.6; % 惯性权重
c1 = 0.5;c2 = 1.5;
pr = 0.4; % 变异率
pop_x = zeros(dim,popsize);  % 当前粒子位置
pop_v = zeros(dim,popsize); % 当前粒子速度
fitness_pop = zeros(1,popsize); % 粒子群当前位置适应度函数
fitness_lbest = zeros(1,popsize); % 个体粒子的历史最优极值
rand('state',sum(clock));

for j = 1:popsize 
    % 位置初始化
    pop_x(1,j) = xlimit_min(1) + rand*(xlimit_max(1) - xlimit_min(1));
    pop_x(2,j) = sqrt(2-pop_x(1,j));
    pop_x(3,j) = sqrt((3 - pop_x(2,j))/2);
    % 速度初始化
    for  i = 1:dim
        pop_v(i,j) = vlimit_min(i) + rand*(vlimit_max(i) - vlimit_min(i));
    end
end
%% 初始化个体极值
lbest = pop_x; % 个体历史最佳极值记录
for j =1: popsize 
    if bind1(pop_x(:,j))
        if bind2(pop_x(:,j))
            fitness_lbest(j) = fun(pop_x(:,j));
        else fitness_lbest(j) = 500;
        end
    else fitness_lbest(j) = 500;
    end
end

%% 初始化全局极值
popbest = pop_x(:,1);
fitness_popbest = fitness_lbest(1);
for j = 2:popsize 
    if fitness_lbest(j) < fitness_popbest
        fitness_popbest = fitness_lbest(j);
        popbest = pop_x(:,j);
    end
end
tic
%% 粒子群迭代
iter = 1; % 当前迭代次数
record = zeros(max_iter,1); % 记录每次迭代的全局极小值
format long;
while iter <= max_iter
    for j = 1:popsize 
        % 更新速度 边界处理
        pop_v(:,j) = w*pop_v(:,j) + c1*rand*(lbest(:,j) - pop_x(:,j)) +...
            c2*rand*(popbest - pop_x(:,j));
        for i = 1:dim 
            if pop_v(i,j) > vlimit_max(i)
                pop_v(i,j) = vlimit_max(i);
            elseif pop_v(i,j) < vlimit_min(i) 
                pop_v(i,j) = vlimit_min(i);
            end
        end
        % 更新位置 边界处理 修正位置 (等式约束)
        pop_x(:,j) = pop_x(:,j) + pop_v(:,j);
        for i = 1:dim 
            if pop_x(i,j) > xlimit_max(i)
                pop_x(i,j)  = xlimit_max(i);
            elseif pop_x(i,j) < xlimit_min(i)
                pop_x(i,j) = xlimit_min(i);
            end
        end
        
        % 进行自适应变异
        if rand < pr 
            i = ceil(dim*rand);
            pop_x(i,j) = xlimit_min(i) + rand*(xlimit_max(i) - xlimit_min(i));
        end
        % 约束条件限制 类似罚函数法
        if bind1(pop_x(:,j))
            if bind2(pop_x(:,j))
                if bind3(pop_x(:,j))
                    if bind4(pop_x(:,j))
                        fitness_pop(j) = fun(pop_x(:,j));
                    else fitness_pop(j) = 500;
                    end
                else fitness_pop(j) = 500;
                end
            else fitness_pop(j) = 500;
            end
        else fitness_pop(j) = 500;
        end
        % 当前适应度与个体历史最佳适应度作比较
        if fitness_pop(j) < fitness_lbest(j)
            lbest(:,j) = pop_x(:,j);
            fitness_lbest(j) = fitness_pop(j);
        end
        % 个体历史最佳适应度与种群历史最佳适应度作比较
        if fitness_popbest > fitness_lbest(j)
            fitness_popbest = fitness_lbest(j);
            popbest = lbest(:,j);
        end
    end
    record(iter) = fitness_popbest;
    iter = iter + 1;
    
end
toc
%% 输出解
minx = popbest
miny = fitness_popbest
plot(record,'r-');
title('粒子群算法迭代过程');
xlabel('迭代次数');
ylabel('当前迭代最佳函数值');

结果:

在这里插入图片描述

在这里插入图片描述
从以上结果可以看出,粒子群算法几乎一开始就保持收敛,说明对于小规模的粒子群,它收敛的迅速

Lingo求解全局最小值比较:

在这里插入图片描述


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/137509.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 超分辨率的数据增强Python(超分辨率重建是什么)

    python在图像超分辨率重建中的应用洪华秀[1];【期刊名称】《计算机产品与流通》【年(卷),期】2019(000)002【摘要】图像超分辨率重建技术是低分辨率图像经过一系列算法处理后转换成高分辨率图像的过程,随着图像数据的应用领域不断延伸,这一技术也逐渐成了图像处理研究热点之一。近几年Python语言在人工智能领域逐渐占领榜首,它的优越性在于强大的第三方数据处理工具的支持。本文在图像超分辨率重…

    2022年4月12日
    198
  • 【STM32H7的DSP教程】第50章 STM32H7的样条插补实现,波形拟合丝滑顺畅[通俗易懂]

    【STM32H7的DSP教程】第50章 STM32H7的样条插补实现,波形拟合丝滑顺畅[通俗易懂]完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547第50章STM32H7的样条插补实现,波形拟合丝滑顺畅本章节讲解样条插补,主要用于波形拟合,平滑过渡。目录50.1初学者重要提示50.2样条插补介绍50.3样条插补实现50.3.1函数arm_spline_init_f3250.3.2函数arm_spline_f3250.3.3使用样条插补函数的关键点50….

    2022年9月6日
    5
  • lunix常用命令「建议收藏」

    lunix常用命令「建议收藏」文件管理命令ls      显示文件或目录   -l     列出文件详细信息l(list)   -a     列出当前目录下所有文件及目录,包括隐藏的a(all)mkdir    创建目录   -p     创建目录,若无父目录,则创建p(parent)cd   

    2022年10月3日
    2
  • 蓝鲸自动化运维平台

    蓝鲸自动化运维平台蓝鲸自动化运维平台1.蓝鲸简介官网:https://bk.tencent.com/docs/腾讯蓝鲸智云,简称蓝鲸,是腾讯互动娱乐事业群(InteractiveEntertainmentGroup,简称IEG)自研自用的一套用于构建企业研发运营一体化体系的PaaS开发框架,提供了aPaaS(DevOps流水线、运行环境托管、前后台框架)和iPaaS(持续集成、CMDB、作业平台、容器管理、数据平台、AI等原子平台)等模块,帮助企业技术人员快速构建基础运营PaaS。2.蓝鲸部署2

    2022年5月17日
    44
  • lmdb安装_Vim下载

    lmdb安装_Vim下载lmdb安装在pip和conda环境中都有,但是不能导入

    2022年9月28日
    2
  • 转载]浅析DEDECMS织梦留言板调用网站head.htm以及自定义的方法

    转载]浅析DEDECMS织梦留言板调用网站head.htm以及自定义的方法

    2021年9月25日
    27

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号