动态规划应用–最长递增子序列 LeetCode 300[通俗易懂]

动态规划应用–最长递增子序列 LeetCode 300[通俗易懂]文章目录1.问题描述2.解题思路2.1回溯法求解2.2动态规划1.问题描述有一个数字序列包含n个不同的数字,如何求出这个序列中的最长递增子序列长度?比如2,9,3,6,5,1,7这样一组数字序列,它的最长递增子序列就是2,3,5,7,所以最长递增子序列的长度是4。2.解题思路2.1回溯法求解/***@description:最长递增子序列*@author:m…

大家好,又见面了,我是你们的朋友全栈君。

1. 问题描述

有一个数字序列包含n个不同的数字,如何求出这个序列中的最长递增子序列长度?比如2,9,3,6,5,1,7这样一组数字序列,它的最长递增子序列就是2,3,5,7,所以最长递增子序列的长度是4。
https://leetcode-cn.com/problems/longest-increasing-subsequence/

2. 解题思路

2.1 动态规划

  • 假设在包含 i-1 下标数字时的最大递增子序列长度为 maxLen(i-1),那么下标为 i 时的 maxLen(i)需要考虑前面所有的状态,
  • 如果 a[j] < a[i] (0 <= j < i),则 maxlen[i] = max(maxlen[j]+1 | (0 <= j < i));
  • 如果 a[j] >= a[i] (0 <= j < i),则 maxlen[i] = 1;

借一张动图说明
在这里插入图片描述
在这里插入图片描述

class Solution 
{ 
   
public:
    int lengthOfLIS(vector<int>& nums) 
    { 
   
        int n = nums.size();
        if(n == 0)
            return 0;
        int maxlen[n], ans;
        int i, j;
        for(i = 0; i < n; ++i)
            maxlen[i] = 1;//至少为1,自己
        for(i = 1; i < n; ++i)
        { 
   
        	ans = 1;
            for(j = 0; j < i; ++j)
            { 
   
            	if(nums[i] > nums[j] && maxlen[j]+1 > ans)
            	{ 
   
            		ans = maxlen[j]+1;
            		maxlen[i] = ans;
            	} 
        	}
        }
        for(ans = 1, i = 0; i < n; ++i)
        { 
   
        	if(maxlen[i] > ans)//取最大值
        		ans = maxlen[i];
        }
        return ans;
    }
};
class Solution { 
   	//2020.3.14
public:
    int lengthOfLIS(vector<int>& nums) { 
   
        if(nums.size() == 0)
            return 0;
        int i, j, n = nums.size(),maxlen = 1;
        vector<int> dp(n,1);
        for(i = 1; i < n; ++i)
        { 
   
            for(j = i-1; j >= 0; --j)
            { 
   
                if(nums[i] > nums[j])
                    dp[i] = max(dp[i], dp[j]+1);
            }
            maxlen = max(maxlen, dp[i]);
        }
        return maxlen;
    }  
};

2.2 二分查找

  • 参考官方的解答
  • dp[i] 表示长度为 i+1 的子序的最后一个元素的 最小数值
  • 遍历每个 nums[i],找到其在dp数组中的位置(大于等于 nums[i] 的第一个数),将他替换成较小的

以输入序列 [0, 8, 4, 12, 2] 为例:

第一步插入 0,dp = [0]

第二步插入 8,dp = [0, 8]

第三步插入 4,dp = [0, 4]

第四步插入 12,dp = [0, 4, 12]

第五步插入 22,dp = [0, 2, 12]

class Solution { 
   
public:
    int lengthOfLIS(vector<int>& nums) { 
   
        if(nums.size() == 0)
            return 0;
        int i, l, r, n = nums.size(), maxlen = 1, idx;
        vector<int> dp(n);
        dp[0] = nums[0];
        for(i = 1; i < n; ++i)//遍历每个数
        { 
   
            l = 0, r = maxlen-1;
            idx = bs(dp,l,maxlen,nums[i],maxlen);
			//二分查找nums[i] 在dp中的位置
            if(idx == maxlen)//nums[i] 是最大的
            { 
   
                dp[idx] = nums[i];
                maxlen++;
            }
            else//不是最大的,更新 dp[i] 里的数为较小的
                dp[idx] = min(dp[idx], nums[i]);
        }
        return maxlen;
    }  

    int bs(vector<int> &dp, int l, int r, int& target, int& maxlen)
    { 
   	//二分查找nums[i] 在dp中的位置, 第一个大于等于 nums[i] 的
        int mid;
        while(l <= r)
        { 
   
            mid = l + ((r-l)>>1);
            if(dp[mid] < target)
                l = mid+1;
            else
            { 
   
                if(mid == 0 || dp[mid-1] < target)
                    return mid;
                else
                    r = mid-1;
            }
        }
        return maxlen;//没有找到,nums[i] 最大,放最后
    }
};
  • 基于上面的想法,直接用 treeset 可以简化代码
class Solution { 
   
public:
    int lengthOfLIS(vector<int>& nums) { 
   
        if(nums.size() == 0)
            return 0;
        set<int> s;
        for(auto& n : nums)
        { 
   
            if(s.count(n))
                continue;
            else
            { 
   
                auto it = s.upper_bound(n);//n的上界
                if(it == s.end())//没有比我大的
                    s.insert(n);
                else//有比我大的
                { 
   
                    s.erase(it);//删除比我大的
                    s.insert(n);//换成我
                }
            }
        }
        return s.size();
    }
};

在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/137616.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • linux testdisk使用教程,使用TestDisk恢复因安装Ubuntu导致的硬盘误格

    linux testdisk使用教程,使用TestDisk恢复因安装Ubuntu导致的硬盘误格前几日心血来潮想把家中的旧笔记本换成 Linux 操作系统 算是在业余生活中正式投入 Linux 的怀抱 说干就干 发行版选择了 Ubuntu 下载了 Ubuntu16 04 的 ISO 下载软碟通 制作成 U 盘启动 恩 重启电脑 U 盘引导 进入安装界面 恩 安装界面挺炫酷啊 还检测到硬盘中安装的 Win8 恩 问我是与其他系统共存还是清除并安装 既然都正式投入怀抱了 肯定只安装 Ubuntu 啊 Win8 拜拜了 恩

    2025年6月24日
    0
  • C++ this指针详解

    C++ this指针详解this指针只能在一个类的成员函数中调用,它表示当前对象的地址。下面是一个例子:​voidDate::setMonth(intmn){month=mn;//这三句是等价的this->month=mn;(*this).month=mn;}​1.this只能在成员函数中使用。…

    2022年5月13日
    34
  • Atitit.列表页and查询条件的最佳实践(1)——设定搜索条件and提交查询and返回json数据

    Atitit.列表页and查询条件的最佳实践(1)——设定搜索条件and提交查询and返回json数据

    2022年1月14日
    88
  • layuiadmin配置mysql_layuiAdmin 后台管理模板

    layuiadmin配置mysql_layuiAdmin 后台管理模板完全由layui自有的前端架构实现而成的一套通用型后台管理模板系统iframe版使用简单基于iframe标签页实现,简单实用传统开发模式,撸起袖子直接开干交互体验相比“单页版”略有点欠缺始终基于全新的layui版本面向全屏幕尺寸的响应式适配能力灵活的主题色配置专属的开发者文档,助你快速掌握版本的持续更新,集大众之所需layui社区VIP标识专属的会员专区,与同道中人隔空交流不限制…

    2025年6月27日
    2
  • phpstorm 2021 激活码3月最新在线激活

    phpstorm 2021 激活码3月最新在线激活,https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月15日
    62
  • 深入理解MySQL索引原理和实现——为什么索引可以加速查询?

    深入理解MySQL索引原理和实现——为什么索引可以加速查询?说到索引,很多人都知道“索引是一个排序的列表,在这个列表中存储着索引的值和包含这个值的数据所在行的物理地址,在数据十分庞大的时候,索引可以大大加快查询的速度,这是因为使用索引后可以不用扫描全表来定位某行的数据,而是先通过索引表找到该行数据对应的物理地址然后访问相应的数据。”但是索引是怎么实现的呢?因为索引并不是关系模型的组成部分,因此不同的DBMS有不同的实现,我们针对MySQL数据库的实现进…

    2022年6月24日
    41

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号