【目标检测】Fast RCNN算法详解

【目标检测】Fast RCNN算法详解继2014年的RCNN之后,RossGirshick在15年推出FastRCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度。

大家好,又见面了,我是你们的朋友全栈君。

Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015.

继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度。在Github上提供了源码

同样使用最大规模的网络,Fast RCNN和RCNN相比,训练时间从84小时减少为9.5小时,测试时间从47秒减少为0.32秒。在PASCAL VOC 2007上的准确率相差无几,约在66%-67%之间.

思想

基础:RCNN

简单来说,RCNN使用以下四步实现目标检测:
a. 在图像中确定约1000-2000个候选框
b. 对于每个候选框内图像块,使用深度网络提取特征
c. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类
d. 对于属于某一特征的候选框,用回归器进一步调整其位置
更多细节可以参看这篇博客

改进:Fast RCNN

Fast RCNN方法解决了RCNN方法三个问题:

问题一:测试时速度慢
RCNN一张图像内候选框之间大量重叠,提取特征操作冗余。
本文将整张图像归一化后直接送入深度网络。在邻接时,才加入候选框信息,在末尾的少数几层处理每个候选框。

问题二:训练时速度慢
原因同上。
在训练时,本文先将一张图像送入网络,紧接着送入从这幅图像上提取出的候选区域。这些候选区域的前几层特征不需要再重复计算。

问题三:训练所需空间大
RCNN中独立的分类器和回归器需要大量特征作为训练样本。
本文把类别判断和位置精调统一用深度网络实现,不再需要额外存储。

以下按次序介绍三个问题对应的解决方法。

特征提取网络

基本结构

图像归一化为224×224直接送入网络。

前五阶段是基础的conv+relu+pooling形式,在第五阶段结尾,输入P个候选区域(图像序号×1+几何位置×4,序号用于训练)?。
这里写图片描述

注:文中给出了大中小三种网络,此处示出最大的一种。三种网络基本结构相似,仅conv+relu层数有差别,或者增删了norm层。

roi_pool层的测试(forward)

roi_pool层将每个候选区域均匀分成M×N块,对每块进行max pooling。将特征图上大小不一的候选区域转变为大小统一的数据,送入下一层。
这里写图片描述

roi_pool层的训练(backward)

首先考虑普通max pooling层。设 x i x_i xi为输入层的节点, y j y_j yj为输出层的节点。
∂ L ∂ x i = { 0 δ ( i , j ) = f a l s e ∂ L ∂ y j δ ( i , j ) = t r u e \frac{\partial L}{\partial x_i}=\begin{cases}0&\delta(i,j)=false\\ \frac{\partial L}{\partial y_j} & \delta(i,j)=true\end{cases} xiL={
0yjLδ(i,j)=falseδ(i,j)=true

其中判决函数 δ ( i , j ) \delta(i,j) δ(i,j)表示i节点是否被j节点选为最大值输出。不被选中有两种可能: x i x_i xi不在 y j y_j yj范围内,或者 x i x_i xi不是最大值。

对于roi max pooling,一个输入节点可能和多个输出节点相连。设 x i x_i xi为输入层的节点, y r j y_{rj} yrj为第 r r r个候选区域的第 j j j个输出节点。
这里写图片描述
∂ L ∂ x i = Σ r , j δ ( i , r , j ) ∂ L ∂ y r j \frac{\partial L}{\partial x_i}=\Sigma_{r,j}\delta(i,r,j)\frac{\partial L}{\partial y_{rj}} xiL=Σr,jδ(i,r,j)yrjL

判决函数 δ ( i , r , j ) \delta(i,r,j) δ(i,r,j)表示i节点是否被候选区域r的第j个节点选为最大值输出。代价对于 x i x_i xi的梯度等于所有相关的后一层梯度之和。

网络参数训练

参数初始化

网络除去末尾部分如下图,在ImageNet上训练1000类分类器。结果参数作为相应层的初始化参数。
这里写图片描述
其余参数随机初始化。

分层数据

在调优训练时,每一个mini-batch中首先加入N张完整图片,而后加入从N张图片中选取的R个候选框。这R个候选框可以复用N张图片前5个阶段的网络特征。
实际选择N=2, R=128。

训练数据构成

N张完整图片以50%概率水平翻转。
R个候选框的构成方式如下:

类别 比例 方式
前景 25% 与某个真值重叠在[0.5,1]的候选框
背景 75% 与真值重叠的最大值在[0.1,0.5)的候选框

分类与位置调整

数据结构

第五阶段的特征输入到两个并行的全连层中(称为multi-task)。
这里写图片描述
cls_score层用于分类,输出K+1维数组 p p p,表示属于K类和背景的概率。
bbox_prdict层用于调整候选区域位置,输出4*K维数组 t t t,表示分别属于K类时,应该平移缩放的参数。

代价函数

loss_cls层评估分类代价。由真实分类 u u u对应的概率决定:
L c l s = − log ⁡ p u L_{cls}=-\log p_u Lcls=logpu

loss_bbox评估检测框定位代价。比较真实分类对应的预测参数 t u t^u tu和真实平移缩放参数为 v v v的差别:
L l o c = Σ i = 1 4 g ( t i u − v i ) L_{loc}=\Sigma_{i=1}^4 g(t^u_i-v_i) Lloc=Σi=14g(tiuvi)
g为Smooth L1误差,对outlier不敏感:
g ( x ) = { 0.5 x 2 ∣ x ∣ < 1 ∣ x ∣ − 0.5 o t h e r w i s e g(x)=\begin{cases} 0.5x^2& |x|<1\\|x|-0.5&otherwise \end{cases} g(x)={
0.5x2x0.5x<1otherwise

总代价为两者加权和,如果分类为背景则不考虑定位代价:
L = { L c l s + λ L l o c u 为 前 景 L c l s u 为 背 景 L=\begin{cases} L_{cls}+\lambda L_{loc}& u为前景\\ L_{cls} &u为背景\end{cases} L={
Lcls+λLlocLclsuu

源码中bbox_loss_weights用于标记每一个bbox是否属于某一个类

全连接层提速

分类和位置调整都是通过全连接层(fc)实现的,设前一级数据为 x x x后一级为 y y y,全连接层参数为 W W W,尺寸 u × v u\times v u×v。一次前向传播(forward)即为:
y = W x y=Wx y=Wx
计算复杂度为 u × v u\times v u×v

W W W进行SVD分解,并用前t个特征值近似:
W = U Σ V T ≈ U ( : , 1 : t ) ⋅ Σ ( 1 : t , 1 : t ) ⋅ V ( : , 1 : t ) T W=U\Sigma V^T\approx U(:,1:t) \cdot \Sigma(1:t,1:t) \cdot V(:,1:t)^T W=UΣVTU(:,1:t)Σ(1:t,1:t)V(:,1:t)T

原来的前向传播分解成两步:
y = W x = U ⋅ ( Σ ⋅ V T ) ⋅ x = U ⋅ z y=Wx = U\cdot (\Sigma \cdot V^T) \cdot x = U \cdot z y=Wx=U(ΣVT)x=Uz
计算复杂度变为 u × t + v × t u\times t+v \times t u×t+v×t
在实现时,相当于把一个全连接层拆分成两个,中间以一个低维数据相连。
这里写图片描述

在github的源码中,这部分似乎没有实现。

实验与结论

实验过程不再详述,只记录结论

  • 网络末端同步训练的分类和位置调整,提升准确度
  • 使用多尺度的图像金字塔,性能几乎没有提高
  • 倍增训练数据,能够有2%-3%的准确度提升
  • 网络直接输出各类概率(softmax),比SVM分类器性能略好
  • 更多候选窗不能提升性能

同年作者团队又推出了Faster RCNN,进一步把检测速度提高到准实时,可以参看这篇博客
关于RCNN, Fast RCNN, Faster RCNN这一系列目标检测算法,可以进一步参考作者在15年ICCV上的讲座Training R-CNNs of various velocities

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/138561.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 电容材料分类_电容有什么材料

    电容材料分类_电容有什么材料转自:https://blog.csdn.net/qq_29350001/article/details/51142105?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.n

    2022年8月22日
    6
  • stat 函数详解

    stat 函数详解stat函数作用:获取文件信息头文件:include<sys/types.h>#include<sys/stat.h>#include<unistd.h>​函数原型:intstat(constchar*path,structstat*buf)​返回值:成功返回0,失败返回-1;​参数:文件路径(名),structstat…

    2022年10月24日
    0
  • STM32看门狗研究

    STM32看门狗研究stm32看门狗资料

    2022年6月10日
    32
  • CentOS 7中创软连接和scp命令

    CentOS 7中创软连接和scp命令(1)创建软连接 使用root用户操作语法:ln -s源路径软连接路径ln-s/home/hadoop/apps/zookeeper-3.4.10/usr/local/zookeeper(2)修改zookeeper软链接属主为hadoop 使用root用户操作chown-Rhadoop:hadoop/usr/local/zookeeper(3)s…

    2022年9月13日
    0
  • 十五种文本编辑器

    十五种文本编辑器很多时候比如编程查看代码或者打开各种文档下我们都会用到文本编辑器,Windows自带的记事本功能很简陋并且打开大文件很慢,因此很多童鞋都会有自己喜欢的一款文本编辑器。在这里,西西挑选前15个最佳的文本编辑器,这些编辑器实际上主要适合程序员!如果觉得这些文本编辑器足够您的使用,欢迎点赞,如果还有更好的,可以给我们推荐哦。1.Notepad++中文版:这是Windows记事本一个最好…

    2022年5月1日
    58
  • getchar用法[通俗易懂]

    getchar用法[通俗易懂]getchar用法1.从缓冲区读走一个字符,相当于清除缓冲区 2.前面的scanf()在读取输入时会在缓冲区中留下一个字符’\n’(输入完s[i]的值后按回车键所致),所以如果不在此加一个getchar()把这个回车符取走的话,gets()就不会等待从键盘键入字符,而是会直接取走这个“无用的”回车符,从而导致读取有误 3. getchar()是在输入缓冲区顺序读入一个字符(包括空…

    2022年10月19日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号