Python+OpenCV实时图像处理「建议收藏」

Python+OpenCV实时图像处理「建议收藏」初学OpenCV图像处理的小伙伴肯定对什么高斯函数、滤波处理、阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特点,也可对各位调参、测试有一定帮助。

大家好,又见面了,我是你们的朋友全栈君。

目录

1、导入库文件

2、设计GUI

3、调用摄像头

4、实时图像处理

4.1、阈值二值化

4.2、边缘检测

4.3、轮廓检测

4.4、高斯滤波

4.5、色彩转换

4.6、调节对比度

5、退出系统


初学OpenCV图像处理的小伙伴肯定对什么高斯函数、滤波处理、阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特点,也可对各位调参、测试有一定帮助。

1、导入库文件

这里主要使用PySimpleGUI、cv2和numpy库文件,PySimpleGUI库文件实现GUI可视化,cv2库文件是Python的OpenCV接口文件,numpy库文件实现数值的转换和运算,均可通过pip导入。

import PySimpleGUI as sg  #pip install pysimplegui
import cv2  #pip install opencv-python
import numpy as np #pip install numpy

2、设计GUI

基于PySimpleGUI库文件实现GUI设计,本项目界面设计较为简单,设计800X400尺寸大小的框图,浅绿色背景,主要由摄像头界面区域和控制按钮区域两部分组成。效果如下所示:

Python+OpenCV实时图像处理「建议收藏」

GUI代码如下所示:

    #背景色
    sg.theme('LightGreen')

    #定义窗口布局
    layout = [
      [sg.Image(filename='', key='image')],
      [sg.Radio('None', 'Radio', True, size=(10, 1))],
      [sg.Radio('threshold', 'Radio', size=(10, 1), key='thresh'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(40, 15), key='thresh_slider')],
      [sg.Radio('canny', 'Radio', size=(10, 1), key='canny'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_a'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='canny_slider_b')],
      [sg.Radio('contour', 'Radio', size=(10, 1), key='contour'),
       sg.Slider((0, 255), 128, 1, orientation='h', size=(20, 15), key='contour_slider'),
       sg.Slider((0, 255), 80, 1, orientation='h', size=(20, 15), key='base_slider')],
      [sg.Radio('blur', 'Radio', size=(10, 1), key='blur'),
       sg.Slider((1, 11), 1, 1, orientation='h', size=(40, 15), key='blur_slider')],
      [sg.Radio('hue', 'Radio', size=(10, 1), key='hue'),
       sg.Slider((0, 225), 0, 1, orientation='h', size=(40, 15), key='hue_slider')],
      [sg.Radio('enhance', 'Radio', size=(10, 1), key='enhance'),
       sg.Slider((1, 255), 128, 1, orientation='h', size=(40, 15), key='enhance_slider')],
      [sg.Button('Exit', size=(10, 1))]
    ]

    #窗口设计
    window = sg.Window('OpenCV实时图像处理',
               layout,
               location=(800, 400),
               finalize=True)

3、调用摄像头

打开电脑内置摄像头,将数据显示在GUI界面上,效果如下所示:

Python+OpenCV实时图像处理「建议收藏」

代码如下所示:

    #打开内置摄像头
    cap = cv2.VideoCapture(0)
    while True:
        event, values = window.read(timeout=0, timeout_key='timeout')

        #实时读取图像
        ret, frame = cap.read()

        #GUI实时更新
        imgbytes = cv2.imencode('.png', frame)[1].tobytes()
        window['image'].update(data=imgbytes)

    window.close()

4、实时图像处理

4.1、阈值二值化

进行阈值二值化操作,大于阈值values[‘thresh_slider’]的,使用255表示,小于阈值values[‘thresh_slider’]的,使用0表示,效果如下所示:

Python+OpenCV实时图像处理「建议收藏」

 代码如下所示:

if values['thresh']:
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)[:, :, 0]
    frame = cv2.threshold(frame, values['thresh_slider'], 255, cv2.THRESH_BINARY)[1]

4.2、边缘检测

进行边缘检测,values[‘canny_slider_a’]表示最小阈值,values[‘canny_slider_b’]表示最大阈值,效果如下所示:

Python+OpenCV实时图像处理「建议收藏」

代码如下所示:

if values['canny']:
    frame = cv2.Canny(frame, values['canny_slider_a'], values['canny_slider_b'])

4.3、轮廓检测

轮廓检测是形状分析和物体检测和识别的有用工具,连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度,效果如下所示:

Python+OpenCV实时图像处理「建议收藏」

 代码如下所示:

if values['contour']:
    hue = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    hue = cv2.GaussianBlur(hue, (21, 21), 1)
    hue = cv2.inRange(hue, np.array([values['contour_slider'], values['base_slider'], 40]),
                      np.array([values['contour_slider'] + 30, 255, 220]))
    cnts= cv2.findContours(hue, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
    cv2.drawContours(frame, cnts, -1, (0, 0, 255), 2)

4.4、高斯滤波

进行高斯滤波,(21, 21)表示高斯矩阵的长与宽都是21,标准差取values[‘blur_slider’],效果如下所示:

Python+OpenCV实时图像处理「建议收藏」

 代码如下所示:

if values['blur']:
    frame = cv2.GaussianBlur(frame, (21, 21), values['blur_slider'])

4.5、色彩转换

色彩空间的转化,HSV转换为BGR,效果如下所示:

Python+OpenCV实时图像处理「建议收藏」

 代码如下所示:

if values['hue']:
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    frame[:, :, 0] += int(values['hue_slider'])
    frame = cv2.cvtColor(frame, cv2.COLOR_HSV2BGR)

4.6、调节对比度

增强对比度,使图像中的细节看起来更加清晰,效果如下所示:

Python+OpenCV实时图像处理「建议收藏」

  代码如下所示:

if values['enhance']:
    enh_val = values['enhance_slider'] / 40
    clahe = cv2.createCLAHE(clipLimit=enh_val, tileGridSize=(8, 8))
    lab = cv2.cvtColor(frame, cv2.COLOR_BGR2LAB)
    lab[:, :, 0] = clahe.apply(lab[:, :, 0])
    frame = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)

5、退出系统

直接break即可跳出循环。

if event == 'Exit' or event is None:
    break

拓展学习:基于Python的人工智能美颜系统 

请关注公众号,回复关键字:OpenCV实时图像处理,获取项目资源。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/139092.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 选择排序算法(C语言实现)[通俗易懂]

    选择排序算法(C语言实现)[通俗易懂]#include<stdio.h>voidchoice(int*a,intn){inti,j,temp;for(i=0;i<n-1;i++){for(j=i+1;j<n;j++){if(a[i]>a[j]){…

    2022年6月25日
    26
  • PS 命令之get-adgroupmember!

    PS 命令之get-adgroupmember!如果get-adgroup是查询我们的用户组的话,那么Get-adgroupmember就是查询出我们的组的成员的的命令了,这个命令的使用方式多数场景和我们的上面命令get-adgroup一起使用了。我们先来看怎么得出某个组的成员

    2022年7月13日
    17
  • CGLIB详解(最详细)

    CGLIB详解(最详细)转载地址:https://blog.csdn.net/danchu/article/details/70238002什么是CGLIBCGLIB是一个强大的、高性能的代码生成库。其被广泛应用于AOP框架(Spring、dynaop)中,用以提供方法拦截操作。Hibernate作为一个比…

    2022年6月11日
    90
  • 怎么开外汇平台_如何搭建一个外汇平台

    怎么开外汇平台_如何搭建一个外汇平台外汇市场从世纪之初进入中国,到如今有十几个年头。从起初耳熟能详的几个平台商到现在如雨后春笋般出现,中国的外汇市场越来越开放,价格成本也越来越透明。很多外汇代理商不断发展壮大,对搭建自己的平台有了需求。开外汇平台赚钱,是一个普遍流传的说法。但是开平台到底有怎么样的风险,需要注意哪些环节,要办理哪些手续,多数人还是感到非常神秘。汇商琅琊榜小编今天结合平台搭建行业资深人士的经验,来和大家谈谈怎么样搭建…

    2025年10月25日
    4
  • xml语言

    xml语言

    2022年1月11日
    36
  • TypeScript基础入门之Javascript文件类型检查(二)「建议收藏」

    TypeScript基础入门之Javascript文件类型检查(二)「建议收藏」TypeScript基础入门之Javascript文件类型检查(二)

    2022年4月20日
    40

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号