openCV人脸识别简单案例[通俗易懂]

openCV人脸识别简单案例[通俗易懂]1基础我们使用机器学习的方法完成人脸检测,首先需要大量的正样本图像(面部图像)和负样本图像(不含面部的图像)来训练分类器。我们需要从其中提取特征。下图中的Haar特征会被使用,就像我们的卷积核,每一个特征是一个值,这个值等于黑色矩形中的像素值之后减去白色矩形中的像素值之和。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。Haar特征可用于于图像任意位置,大小也可以任意改变,所以矩形特征值是

大家好,又见面了,我是你们的朋友全栈君。

1 基础

我们使用机器学习的方法完成人脸检测,首先需要大量的正样本图像(面部图像)和负样本图像(不含面部的图像)来训练分类器。我们需要从其中提取特征。下图中的 Haar 特征会被使用,就像我们的卷积核,每一个特征是一 个值,这个值等于黑色矩形中的像素值之后减去白色矩形中的像素值之和。

image-20191014152218924

Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。

Haar特征可用于于图像任意位置,大小也可以任意改变,所以矩形特征值是矩形模版类别、矩形位置和矩形大小这三个因素的函数。故类别、大小和位置的变化,使得很小的检测窗口含有非常多的矩形特征。

image-20191014152716626

得到图像的特征后,训练一个决策树构建的adaboost级联决策器来识别是否为人脸。

image-20191014160504382

2.实现

OpenCV中自带已训练好的检测器,包括面部,眼睛,猫脸等,都保存在XML文件中,我们可以通过以下程序找到他们:

import cv2 as cv
print(cv.__file__)

找到的文件如下所示:

image-20191014160719733

那我们就利用这些文件来识别人脸,眼睛等。检测流程如下:

  1. 读取图片,并转换成灰度图

  2. 实例化人脸和眼睛检测的分类器对象

    # 实例化级联分类器
    classifier =cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
    # 加载分类器
    classifier.load('haarcascade_frontalface_default.xml')
    
  3. 进行人脸和眼睛的检测

    rect = classifier.detectMultiScale(gray, scaleFactor, minNeighbors, minSize,maxsize)
    

    参数:

    • Gray: 要进行检测的人脸图像
    • scaleFactor: 前后两次扫描中,搜索窗口的比例系数
    • minneighbors:目标至少被检测到minNeighbors次才会被认为是目标
    • minsize和maxsize: 目标的最小尺寸和最大尺寸
  4. 将检测结果绘制出来就可以了。

主程序如下所示:

import cv2 as cv
import matplotlib.pyplot as plt
# 1.以灰度图的形式读取图片
img = cv.imread("16.jpg")
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)

# 2.实例化OpenCV人脸和眼睛识别的分类器 
face_cas = cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
face_cas.load('haarcascade_frontalface_default.xml')

eyes_cas = cv.CascadeClassifier("haarcascade_eye.xml")
eyes_cas.load("haarcascade_eye.xml")

# 3.调用识别人脸 
faceRects = face_cas.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32)) 
for faceRect in faceRects: 
    x, y, w, h = faceRect 
    # 框出人脸 
    cv.rectangle(img, (x, y), (x + h, y + w),(0,255,0), 3) 
    # 4.在识别出的人脸中进行眼睛的检测
    roi_color = img[y:y+h, x:x+w]
    roi_gray = gray[y:y+h, x:x+w]
    eyes = eyes_cas.detectMultiScale(roi_gray) 
    for (ex,ey,ew,eh) in eyes:
        cv.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
# 5. 检测结果的绘制
plt.figure(figsize=(8,6),dpi=100)
plt.imshow(img[:,:,::-1]),plt.title('检测结果')
plt.xticks([]), plt.yticks([])
plt.show()

结果:

image-20191014164455020

我们也可在视频中对人脸进行检测:

import cv2 as cv
import matplotlib.pyplot as plt
# 1.读取视频
cap = cv.VideoCapture("movie.mp4")
# 2.在每一帧数据中进行人脸识别
while(cap.isOpened()):
    ret, frame = cap.read()
    if ret==True:
        gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
        # 3.实例化OpenCV人脸识别的分类器 
        face_cas = cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
        face_cas.load('haarcascade_frontalface_default.xml')
        # 4.调用识别人脸 
        faceRects = face_cas.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32)) 
        for faceRect in faceRects: 
            x, y, w, h = faceRect 
            # 框出人脸 
            cv.rectangle(frame, (x, y), (x + h, y + w),(0,255,0), 3) 
        cv.imshow("frame",frame)
        if cv.waitKey(1) & 0xFF == ord('q'):
            break
# 5. 释放资源
cap.release()  
cv.destroyAllWindows()

总结

opencv中人脸识别的流程是:

  1. 读取图片,并转换成灰度图
  2. 实例化人脸和眼睛检测的分类器对象
# 实例化级联分类器
classifier =cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
# 加载分类器
classifier.load('haarcascade_frontalface_default.xml')
  1. 进行人脸和眼睛的检测
rect = classifier.detectMultiScale(gray, scaleFactor, minNeighbors, minSize,maxsize)
  1. 将检测结果绘制出来就可以了。

我们也可以在视频中进行人脸识别

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/140024.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • JVM调优之 -Xms -Xmx -Xmn -Xss[通俗易懂]

    原文地址  http://unixboy.iteye.com/blog/174173堆大小设置JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在WindowsServer2003系统,3.5G物理内存,J

    2022年4月8日
    103
  • 一窥直播技术新趋势「建议收藏」

    一窥直播技术新趋势「建议收藏」历经2016直播元年的爆发,直播App的虚火逐步降温,行业逐渐恢复理性,并不断探索新的产品形态与创新。这其中,技术扮演了不可或缺的角色,新的编码与传输协议,覆盖全球的网络架构,低延迟的音频传输与白板,基于深度学习的图像识别等,这一切进一步加强了各直播参与方的互动。基于Html5的直播技术,AR/VR,H.265编码普及,高清直播成本进一步降低,人工智能等技术又将让直播充满了更多想象。

    2022年7月21日
    14
  • Java 零拷贝_java clone 深拷贝

    Java 零拷贝_java clone 深拷贝Java零拷贝参考:Java中的零拷贝零拷贝(英语:Zero-copy)技术是指计算机执行操作时,CPU不需要先将数据从某处内存复制到另一个特定区域。这种技术通常用于通过网络传输文件时节省CPU周期和内存带宽。零拷贝技术可以减少数据拷贝和共享总线操作的次数,消除传输数据在存储器之间不必要的中间拷贝次数,从而有效地提高数据传输效率零拷贝技术减少了用户进程地址空间和内核地址空间之间因为上:下文切换而带来的开销传统的IO数据读写如下的例子,Java传统IO和网络编程的一段代码Fi

    2022年9月21日
    4
  • jquery 中append追加不能写if等逻辑语句及table列合并问题

    jquery 中append追加不能写if等逻辑语句及table列合并问题

    2021年7月15日
    102
  • 国内外手机号码正则表达式

    国内外手机号码正则表达式附上语言(文化)代码与国家地区对照表:国家/地区语言代码国家/地区语言代码:简体中文(中国) zh-cn 繁体中文(台湾地区) zh-tw 繁体中文(香港) zh-hk 英语(香港) en-hk 英语(美国) en-us 英语(英国) en-gb 英语(全球) en-ww 英语(加拿大) en-ca 英语(澳大利亚) en-au 英语(爱尔兰) en-ie 英语(芬兰) en-f

    2022年6月1日
    39
  • android一键 iphone,安卓手机一键变“iPhone”,这种App太过分了

    android一键 iphone,安卓手机一键变“iPhone”,这种App太过分了原标题:安卓手机一键变“iPhone”,这种App太过分了最近有小伙伴问小雷,如何才能在安卓手机上使用iOS的桌面。让整个手机看起来更加清爽整洁。想让苹果手机变得“卓里卓气”可能有点麻烦,但是如果是安卓手机想变成iOS风格,那是分分钟就能搞定的事情。今天小雷就给大家推荐一款能够随意更换主题UI的实用软件——【XLauncherPro】。这是一款模仿iPhone手机界面的应用,有了它可以让手机界…

    2022年5月9日
    61

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号