python实现卷积操作

python实现卷积操作文章目录调用tf.nn.conv2d()实现卷积自己实现卷积函数我们知道,tensorflow里面自带卷积函数,tf.nn.conv2d()就可以实现相关功能,本文主要是自己实现卷积操作,然后和tf.nn.conv2d()函数的结果对比,验证正确性。调用tf.nn.conv2d()实现卷积首先是调用卷积函数实现卷积操作:这里说明一下conv2d的定义及参数含义:参考【定义:】tf.n…

大家好,又见面了,我是你们的朋友全栈君。

我们知道,tensorflow里面自带卷积函数,tf.nn.conv2d()就可以实现相关功能,本文主要是自己实现卷积操作,然后和tf.nn.conv2d()函数的结果对比,验证正确性。

调用tf.nn.conv2d()实现卷积

首先是调用卷积函数实现卷积操作:
这里说明一下conv2d的定义及参数含义: 参考
【定义:】
tf.nn.conv2d (input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)
【参数:】
input : 输入的要做卷积的图片,要求为一个张量,shape为 [ batch, in_height, in_weight, in_channel ],其中batch为图片的数量,in_height 为图片高度,in_weight 为图片宽度,in_channel 为图片的通道数,灰度图该值为1,彩色图为3。(也可以用其它值,但是具体含义不是很理解)
filter: 卷积核,要求也是一个张量,shape为 [ filter_height, filter_weight, in_channel, out_channels ],其中 filter_height 为卷积核高度,filter_weight 为卷积核宽度,in_channel 是图像通道数 ,和 input 的 in_channel 要保持一致,out_channel 是卷积核数量。
strides: 卷积时在图像每一维的步长,这是一个一维的向量,[ 1, strides, strides, 1],第一位和最后一位固定必须是1
padding: string类型,值为“SAME” 和 “VALID”,表示的是卷积的形式,是否考虑边界。”SAME”是考虑边界,不足的时候用0去填充周围,”VALID”则不考虑
use_cudnn_on_gpu: bool类型,是否使用cudnn加速,默认为true

import tensorflow as tf
import numpy as np
input = np.array([[1,1,1,0,0],[0,1,1,1,0],[0,0,1,1,1],[0,0,1,1,0],[0,1,1,0,0]])
input = input.reshape([1,5,5,1]) #因为conv2d的参数都是四维的,因此要reshape成四维
kernel = np.array([[1,0,1],[0,1,0],[1,0,1]])
kernel = kernel.reshape([3,3,1,1]) #kernel也要reshape
print(input.shape,kernel.shape) #(1, 5, 5, 1) (3, 3, 1, 1)

x = tf.placeholder(tf.float32,[1,5,5,1])
k = tf.placeholder(tf.float32,[3,3,1,1])
output = tf.nn.conv2d(x,k,strides=[1,1,1,1],padding='VALID')

with tf.Session() as sess:
    y = sess.run(output,feed_dict={ 
   x:input,k:kernel})
    print(y.shape) #(1,3,3,1)
    print(y) #因为y有四维,输出太长了,我就只写一下中间两维的结果(3*3部分):[[4,3,4],[2,4,3],[2,3,4]]

 

自己实现卷积函数

下面我们自己实现一个卷积操作,就不care batch和channel那两维了,直接拿中间的二维为例。下面是 实现的代码(我这个太偷懒了,步长、padding这些都没有考虑进去):

import numpy as np
input = np.array([[1,1,1,0,0],[0,1,1,1,0],[0,0,1,1,1],[0,0,1,1,0],[0,1,1,0,0]])
kernel = np.array([[1,0,1],[0,1,0],[1,0,1]])
print(input.shape,kernel.shape)

def my_conv(input,kernel):
    output_size = (len(input)-len(kernel)+1)
    res = np.zeros([output_size,output_size],np.float32)
    for i in range(len(res)):
        for j in range(len(res)):
            res[i][j] = compute_conv(input,kernel,i,j)
    return res

def compute_conv(input,kernel,i,j):
    res = 0
    for kk in range(3):
        for k in range(3):
            print(input[i+kk][j+k])
            res +=input[i+kk][j+k]*kernel[kk][k]  #这句是关键代码,实现了两个矩阵的点乘操作
    return res
print(my_conv(input,kernel)) 

输出:

[[4. 3. 4.]
 [2. 4. 3.]
 [2. 3. 4.]]
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/140438.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • unity3D入门_福彩3D深度资料

    unity3D入门_福彩3D深度资料UnityShader中级(Unity2019unity教程初级中级高级扫码时备注或说明中留下邮箱付款后如未回复请加微信630105904联系本博主

    2022年9月19日
    0
  • 回归分析(stata实例详细解答过程)[通俗易懂]

    回归分析(stata实例详细解答过程)[通俗易懂]现有某电商平台846条关于婴幼儿奶粉的销售信息,每条信息由11个指标组成。其中,评价量可以从一个侧面反映顾客对产品的关注度。请对所给数据进行以下方面的分析,要求最终的分析将不仅仅有益于商家,更有益于宝妈们为宝贝选择适合自己的奶粉。(1)以评价量为因变量,分析其它变量和评价量之间的关系。(2)以评价量为因变量,研究影响评价量的重要因素。我们运用stata软件解决此问题。第一问在第一问中要求我们,以评价量为因变量,分析其它变量和评价量之间的关系。我们在这里用回归分析,…

    2022年8月30日
    1
  • CIDR的特殊性

    CIDR的特殊性

    2022年3月8日
    43
  • 《图解HTTP》读书笔记建议收藏

    《图解HTTP》对HTTP协议进行了全面系统的介绍。作者由HTTP协议的发展历史娓娓道来,严谨细致地剖析了HTTP协议的结构,列举诸多常见通信场景及实战案例,最后延伸到Web安全、最新技术动向等方面。

    2021年12月18日
    54
  • Ubuntu 安装Nginx

    Ubuntu 安装NginxUbuntu20.04LTS安装Nginx

    2022年9月19日
    1
  • Spring获取request对象的几种方式[通俗易懂]

    Spring获取request对象的几种方式[通俗易懂]参考文章:在SpringMVC中获取request对象的几种方式Springboot获取request和response使用Springboot,我们很多时候直接使用@PathVariable、@RequestParam、@Param来获取参数,但是偶尔还是要用到request和response,怎么获取呢?也很方便,有三种方式可以获取,任选其一就行。1、通过静态方法…

    2022年5月18日
    50

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号