推荐系统中传统模型——LightGBM + FFM融合

推荐系统中传统模型——LightGBM + FFM融合之前比较相关的文章:推荐系统中传统模型——LightGBM+LR融合python-机器学习lightgbm相关实践1深入FFM原理与实践来自美团技术团队的,深入FFM原理与实践FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩。美团技术团队在搭建DSP的过程中,探索并使用了FM和FFM模型进行CTR和CVR预估,并且取得了不错的效果。经过One-Hot编码之后,大部分

大家好,又见面了,我是你们的朋友全栈君。

之前比较相关的文章:
推荐系统中传统模型——LightGBM + LR融合
python – 机器学习lightgbm相关实践


1 深入FFM原理与实践

来自美团技术团队的,深入FFM原理与实践

FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩。美团技术团队在搭建DSP的过程中,探索并使用了FM和FFM模型进行CTR和CVR预估,并且取得了不错的效果。

  • 经过One-Hot编码之后,大部分样本数据特征是比较稀疏的。
  • One-Hot编码的另一个特点就是导致特征空间大。

同时通过观察大量的样本数据可以发现,某些特征经过关联之后,与label之间的相关性就会提高。
FFM主要用来预估站内的CTR和CVR,即一个用户对一个商品的潜在点击率和点击后的转化率。

CTR和CVR预估模型都是在线下训练,然后用于线上预测。两个模型采用的特征大同小异,主要有三类:用户相关的特征、商品相关的特征、以及用户-商品匹配特征。用户相关的特征包括年龄、性别、职业、兴趣、品类偏好、浏览/购买品类等基本信息,以及用户近期点击量、购买量、消费额等统计信息。商品相关的特征包括所属品类、销量、价格、评分、历史CTR/CVR等信息。用户-商品匹配特征主要有浏览/购买品类匹配、浏览/购买商家匹配、兴趣偏好匹配等几个维度。

为了使用FFM方法,所有的特征必须转换成“field_id:feat_id:value”格式,
field_id代表特征所属field的编号,feat_id是特征编号,value是特征的值

数值型的特征比较容易处理,只需分配单独的field编号,如用户评论得分、商品的历史CTR/CVR等。categorical特征需要经过One-Hot编码成数值型,编码产生的所有特征同属于一个field,而特征的值只能是0或1,如用户的性别、年龄段,商品的品类id等。除此之外,还有第三类特征,如用户浏览/购买品类,有多个品类id且用一个数值衡量用户浏览或购买每个品类商品的数量。这类特征按照categorical特征处理,不同的只是特征的值不是0或1,而是代表用户浏览或购买数量的数值。按前述方法得到field_id之后,再对转换后特征顺序编号,得到feat_id,特征的值也可以按照之前的方法获得。

2 案例

代码案例参考的是:wangru8080/gbdt-lr

其中FFM使用的是libffm库来训练,代码仅给出了构造数据输入的方法(FFMFormat),构造好输入格式后,直接使用libFFM训练即可。

这边libffm所需要的训练格式比较特别:

label field_id:feature_id:value field_id:feature_id:value field_id:feature_id:value …

  • field_id表示每一个特征域的id号
  • feature_id表示所有特征值的id号(可采用连续编码以及hash编码)
  • value:当特征域不是连续特征时,value=1,若为连续特征,value=该特征的值

对于pandas DataFrame格式数据来说:

label  category_feature  continuous_feature  vector_feature
=====  ================  ==================  ==============
0           x               1.1               1 2
1           y               1.2               3 4 5   
0           x               2.2               6 7 8 9

本文仅有category_feature,continuous_feature,vector_feature。

wangru8080/gbdt-lr中,数据转化的代码为:

def FFMFormat(df, label, path, train_len, category_feature = [], continuous_feature = []):
    index = df.shape[0]
    train = open(path + 'train.ffm', 'w')
    test = open(path + 'test.ffm', 'w')
    feature_index = 0
    feat_index = {}
    for i in range(index):
        feats = []
        field_index = 0
        for j, feat in enumerate(category_feature):
            t = feat + '_' + str(df[feat][i])
            if t not in  feat_index.keys():
                feat_index[t] = feature_index
                feature_index = feature_index + 1
            feats.append('%s:%s:%s' % (field_index, feat_index[t], 1))
            field_index = field_index + 1

        for j, feat in enumerate(continuous_feature):
            feats.append('%s:%s:%s' % (field_index, feature_index, df[feat][i]))
            feature_index = feature_index + 1
            field_index = field_index + 1

        print('%s %s' % (df[label][i], ' '.join(feats)))

        if i < train_len:
            train.write('%s %s\n' % (df[label][i], ' '.join(feats)))
        else:
            test.write('%s\n' % (' '.join(feats)))
    train.close()
    test.close()

其中LightGBM 之后的叶子节点数据是离散的数据,

3 Kaggle: Pandas to libffm

网址:https://www.kaggle.com/mpearmain/pandas-to-libffm

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
from sklearn.datasets import make_classification

'''
Another CTR comp and so i suspect libffm will play its part, after all it is an atomic bomb for this kind of stuff.
A sci-kit learn inspired script to convert pandas dataframes into libFFM style data.

The script is fairly hacky (hey thats Kaggle) and takes a little while to run a huge dataset.
The key to using this class is setting up the features dtypes correctly for output (ammend transform to suit your needs)

Example below

'''


class FFMFormatPandas:
    def __init__(self):
        self.field_index_ = None
        self.feature_index_ = None
        self.y = None

    def fit(self, df, y=None):
        self.y = y
        df_ffm = df[df.columns.difference([self.y])]
        if self.field_index_ is None:
            self.field_index_ = {col: i for i, col in enumerate(df_ffm)}

        if self.feature_index_ is not None:
            last_idx = max(list(self.feature_index_.values()))

        if self.feature_index_ is None:
            self.feature_index_ = dict()
            last_idx = 0

        for col in df.columns:
            vals = df[col].unique()
            for val in vals:
                if pd.isnull(val):
                    continue
                name = '{}_{}'.format(col, val)
                if name not in self.feature_index_:
                    self.feature_index_[name] = last_idx
                    last_idx += 1
            self.feature_index_[col] = last_idx
            last_idx += 1
        return self

    def fit_transform(self, df, y=None):
        self.fit(df, y)
        return self.transform(df)

    def transform_row_(self, row, t):
        ffm = []
        if self.y != None:
            ffm.append(str(row.loc[row.index == self.y][0]))
        if self.y is None:
            ffm.append(str(0))

        for col, val in row.loc[row.index != self.y].to_dict().items():
            col_type = t[col]
            name = '{}_{}'.format(col, val)
            if col_type.kind ==  'O':
                ffm.append('{}:{}:1'.format(self.field_index_[col], self.feature_index_[name]))
            elif col_type.kind == 'i':
                ffm.append('{}:{}:{}'.format(self.field_index_[col], self.feature_index_[col], val))
        return ' '.join(ffm)

    def transform(self, df):
        t = df.dtypes.to_dict()
        return pd.Series({idx: self.transform_row_(row, t) for idx, row in df.iterrows()})

########################### Lets build some data and test ############################
### 


train, y = make_classification(n_samples=100, n_features=5, n_informative=2, n_redundant=2, n_classes=2, random_state=42)

train=pd.DataFrame(train, columns=['int1','int2','int3','s1','s2'])
train['int1'] = train['int1'].map(int)
train['int2'] = train['int2'].map(int)
train['int3'] = train['int3'].map(int)
train['s1'] = round(np.log(abs(train['s1'] +1 ))).map(str)
train['s2'] = round(np.log(abs(train['s2'] +1 ))).map(str)
train['clicked'] = y


ffm_train = FFMFormatPandas()
ffm_train_data = ffm_train.fit_transform(train, y='clicked')
print('Base data')
print(train[0:10])
print('FFM data')
print(ffm_train_data[0:10])
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/140641.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • CORBA简介_吴帝聪简介

    CORBA简介_吴帝聪简介 1.CORBA:CommonObjectRequestBrokerArchitecture,通用对象请求代理体系。是由对象管理组(ObjectManagementGroup,OMG)制定的一种标准的面向对象分布式应用程序体系规范,旨在为异构分布式环境中,硬件和软件系统的互联而提出的一种解决方案。2.解决异构分布式系统两条主要原则:(1).寻求独立于平台的模型和抽象,这

    2022年4月19日
    48
  • 最新朋友圈集赞生成器_朋友圈点赞生成器免费

    最新朋友圈集赞生成器_朋友圈点赞生成器免费大家好这是一款朋友圈积攒截图小程序里面内涵三款样式生成,一款图文,一款分享,一款查看的样式也就是我们微信朋友圈所用到的样式就包含了里面的流量主那些可以用户自由的添加哈!赞的数量那些可以用户自定义的哈另外所需的内容也是用户自定义的安装方法的话和往常一样!直接微信开发者工具打开源码然后设置一个合法域名上传审核就可以了合法域名在压缩包里面,搭建解压了就可以看到了小程序源码下载地址:…

    2022年9月5日
    4
  • Android系统签名生成[通俗易懂]

    Android系统签名生成[通俗易懂]Android系统应用添加系统签名在开发的过程中,如果需要设置当前的应用为系统应用,需要两步:在对应的AndroidManifest.xml文件中将“android:sharedUserId”设置为”android.uid.system”。如下所示:<?xmlversion=”1.0″encoding=”utf-8″?><manifestxmlns:android=”http://schemas.android.com/apk/res/android”pack

    2022年6月21日
    26
  • NTP协议实现_ntp时间同步端口

    NTP协议实现_ntp时间同步端口本文出处:http://www.eefocus.com/html/10-04/94667s.shtml10.4 实验内容——NTP协议实现1.实验目的    通过实现NTP协议的练习,进一步掌握Linux网络编程,并且提高协议的分析与实现能力,为参与完成综合性

    2022年10月12日
    0
  • 【题解】递归数列

    【题解】递归数列"题目链接"题目大意:给定序列迭代规则,求一段的序列和。特点是要求的序列很长。Solution观察到,由于是求和,我们可以想到前缀和的思想。也就是说,对于求$\sum_{i=

    2022年7月2日
    25
  • Hibernate框架–学习笔记(上):hibernate项目的搭建和常用接口方法、对象的使用

    Hibernate框架–学习笔记(上):hibernate项目的搭建和常用接口方法、对象的使用

    2021年9月26日
    40

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号