PyTorch实现ResNet18

PyTorch实现ResNet18ResNet-18结构基本结点代码实现importtorchimporttorch.nnasnnfromtorch.nnimportfunctionalasFclassRestNetBasicBlock(nn.Module):def__init__(self,in_channels,out_channels,stride):super(RestNetBasicBlock,self).__init__()self.

大家好,又见面了,我是你们的朋友全栈君。

ResNet-18结构

在这里插入图片描述

基本结点

在这里插入图片描述

代码实现

import torch
import torch.nn as nn
from torch.nn import functional as F


class RestNetBasicBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride):
        super(RestNetBasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        output = self.conv1(x)
        output = F.relu(self.bn1(output))
        output = self.conv2(output)
        output = self.bn2(output)
        return F.relu(x + output)


class RestNetDownBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride):
        super(RestNetDownBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride[0], padding=1)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride[1], padding=1)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.extra = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride[0], padding=0),
            nn.BatchNorm2d(out_channels)
        )

    def forward(self, x):
        extra_x = self.extra(x)
        output = self.conv1(x)
        out = F.relu(self.bn1(output))

        out = self.conv2(out)
        out = self.bn2(out)
        return F.relu(extra_x + out)


class RestNet18(nn.Module):
    def __init__(self):
        super(RestNet18, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.bn1 = nn.BatchNorm2d(64)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = nn.Sequential(RestNetBasicBlock(64, 64, 1),
                                    RestNetBasicBlock(64, 64, 1))

        self.layer2 = nn.Sequential(RestNetDownBlock(64, 128, [2, 1]),
                                    RestNetBasicBlock(128, 128, 1))

        self.layer3 = nn.Sequential(RestNetDownBlock(128, 256, [2, 1]),
                                    RestNetBasicBlock(256, 256, 1))

        self.layer4 = nn.Sequential(RestNetDownBlock(256, 512, [2, 1]),
                                    RestNetBasicBlock(512, 512, 1))

        self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))

        self.fc = nn.Linear(512, 10)

    def forward(self, x):
        out = self.conv1(x)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = self.avgpool(out)
        out = out.reshape(x.shape[0], -1)
        out = self.fc(out)
        return out

用来预测CIFAR-10数据集

数据集

官网链接:CIFAR-10 DATASET
在这里插入图片描述

测试代码

import torch
from torch import nn, optim
import torchvision.transforms as transforms
from torchvision import datasets
from torch.utils.data import DataLoader
from restnet18.restnet18 import RestNet18


# 用CIFAR-10 数据集进行实验

def main():
    batchsz = 128

    cifar_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]), download=True)
    cifar_train = DataLoader(cifar_train, batch_size=batchsz, shuffle=True)

    cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]), download=True)
    cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)

    x, label = iter(cifar_train).next()
    print('x:', x.shape, 'label:', label.shape)

    device = torch.device('cuda')
    # model = Lenet5().to(device)
    model = RestNet18().to(device)

    criteon = nn.CrossEntropyLoss().to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    print(model)

    for epoch in range(1000):

        model.train()
        for batchidx, (x, label) in enumerate(cifar_train):
            # [b, 3, 32, 32]
            # [b]
            x, label = x.to(device), label.to(device)

            logits = model(x)
            # logits: [b, 10]
            # label: [b]
            # loss: tensor scalar
            loss = criteon(logits, label)

            # backprop
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        print(epoch, 'loss:', loss.item())

        model.eval()
        with torch.no_grad():
            # test
            total_correct = 0
            total_num = 0
            for x, label in cifar_test:
                # [b, 3, 32, 32]
                # [b]
                x, label = x.to(device), label.to(device)

                # [b, 10]
                logits = model(x)
                # [b]
                pred = logits.argmax(dim=1)
                # [b] vs [b] => scalar tensor
                correct = torch.eq(pred, label).float().sum().item()
                total_correct += correct
                total_num += x.size(0)
                # print(correct)

            acc = total_correct / total_num
            print(epoch, 'test acc:', acc)


if __name__ == '__main__':
    main()

运行结果

在这里插入图片描述
感觉挺low的,迭代50多次能达到80多的准确率

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/141287.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • pki密码技术_密码学入门

    pki密码技术_密码学入门CA中心——CA系统——数字证书CA中心管理并运营CA系统,CA系统负责颁发数字证书。专门负责颁发数字证书的系统称为CA系统,负责管理并运营CA系统的机构称为CA中心。所有与数字证书相关的各种概念和技术,统称为PKI(PublicKeyInfrastructure)。传统密码学换位加密法; 替换加密法;现代密码学加密基元加密基元就是一些基础的密码学算法,通过它们才能够构建更多的密码学算法、协议、应用程序。说明:散列函数(散列(hash)、.

    2022年8月22日
    6
  • mssql QUOTENAME 的作用[通俗易懂]

    mssql QUOTENAME 的作用[通俗易懂]简单来说吧比如你有一个表,名字叫index你有一个动态查询,参数是表名declare@tbnamevarchar(256)set@tbname=’index’—查这个表里的数据:print(‘select*from’+@tbname)exec(‘select*from’+@tbname)–这样print出来的数据是select*…

    2022年7月25日
    14
  • java面试宝典2019

    java面试宝典2019java面试宝典20191、meta标签的作用是什么2、ReenTrantLock可重入锁(和synchronized的区别)总结3、Spring中的自动装配有哪些限制?4、什么是可变参数?5、什么是领域模型(domainmodel)?贫血模型(anaemicdomainmodel)和充血模型(richdomainmodel)有什么区别?6、说说http,http…

    2022年7月14日
    27
  • 手把手教你python画图(精简实例,一看就懂)

    手把手教你python画图(精简实例,一看就懂)1、不叨叨,直接上代码importmatplotlib.pyplotaspltx=[1,2,3,4,5]y=[0,3,2,7,9]plt.figure()plt.plot(x,y,’r-‘,lw=5)plt.show()2、结果图

    2022年6月2日
    44
  • srvctl命令_srvctl命令

    srvctl命令_srvctl命令添加删除ASMCommand:srvctladdasm[-llsnr_name][-pspfile][-dasm_diskstring]Command:srvctlremoveasm-l[-f]Example:srvctladdasm-lLISTENER_ASM01-p+diskg_data/spfile.oraExample:srvctlremoveasm-lLISTENER_ASM01-f启动停

    2025年10月27日
    1
  • CURL

    CURL

    2021年7月31日
    57

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号