Pytorch搭建ResNet18

Pytorch搭建ResNet18ResNet代码importtorchimporttorchvisionimporttorch.nnasnnimporttorch.nn.functionalasFimportmatplotlib.pyplotaspltimportnumpyasnp#definestructureclassBasicBlock(nn.Module):def__init__(self,in_planes,planes,stride=1):

大家好,又见面了,我是你们的朋友全栈君。

ResNet代码

在
本文主要搭建了ResNet18网络架构,每个block中包含两个Basicblock,每个Basicblock中包含两层,除去输入层和输出层外,一共有16层网络。而且每一个Basciblock之后进行一次跳跃连接。在此基础上,利用CIFAR10上的数据集大小举例,说明了ResNet网络中每层输出的大小变化。

import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np

# define structure
class BasicBlock(nn.Module):
    def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels=in_planes, out_channels=planes, kernel_size=3, stride=stride, padding=1, bias=False),
            nn.BatchNorm2d(planes),
            nn.ReLU()
        )

        self.conv2 = nn.Sequential(
            nn.Conv2d(in_channels=planes, out_channels=planes, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(planes)
        )

        if stride != 1 or in_planes != planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride),
                nn.BatchNorm2d(planes)
            )
        else:
            self.shortcut = nn.Sequential()

    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)
        # print(out.shape)
        # print(self.shortcut(x).shape)
        out += self.shortcut(x)
        out = F.relu(out)
        return out

class ResNet(nn.Module):
    def __init__(self, block, num_block, num_classes):
        super(ResNet, self).__init__()
        self.in_planes = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)               # the first layer

        self.layer1 = self._make_layer(block, 64, num_block[0], stride=1)             # four layers 2-5
        self.layer2 = self._make_layer(block, 128, num_block[1], stride=2)            # four layers 6-9
        self.layer3 = self._make_layer(block, 256, num_block[2], stride=2)            # four layers 10-13
        self.layer4 = self._make_layer(block, 512, num_block[3], stride=2)            # four layers 14-17

        self.fc = nn.Linear(512, num_classes)                                         # the last layer

    def _make_layer(self, block, planes, num_blocks, stride):                          
        layers = []
        for i in range(num_blocks):
            if i == 0:
                layers.append(block(self.in_planes, planes, stride))
            else:
                layers.append(block(planes, planes, 1))

        self.in_planes = planes   
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.maxpool(self.relu(self.bn1(self.conv1(x))))
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = F.avg_pool2d(x, 4)
        x = x.view(x.size(0), -1)
        out = self.fc(x)
        return out

Resnet18 = ResNet(BasicBlock, [2, 2, 2, 2], 10)
print(Resnet18)

运行结果

ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Sequential(
        (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (conv2): Sequential(
        (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (shortcut): Sequential()
    )
    (1): BasicBlock(
      (conv1): Sequential(
        (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (conv2): Sequential(
        (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (shortcut): Sequential()
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Sequential(
        (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (conv2): Sequential(
        (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (shortcut): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2))
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Sequential(
        (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (conv2): Sequential(
        (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (shortcut): Sequential()
    )
  )
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Sequential(
        (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (conv2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (shortcut): Sequential(
        (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2))
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (conv2): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (shortcut): Sequential()
    )
  )
  (layer4): Sequential(
    (0): BasicBlock(
      (conv1): Sequential(
        (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (conv2): Sequential(
        (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (shortcut): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2))
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Sequential(
        (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
      )
      (conv2): Sequential(
        (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (shortcut): Sequential()
    )
  )
  (fc): Linear(in_features=512, out_features=10, bias=True)
)

Process finished with exit code 0

每层网络分析,以CIFAR10上的数据集为例说明

在这里插入图片描述
左:每一块之后的输出变化;中:网络结构;右:具体一个块,也就是两个Basicblock的结构。

ResNet18代码分析

上面的代码中主要有两个需要注意的地方

注意一:

每一个block中的第一个basicblock中的第一层卷积的in_channel是上一层层的out_channel。
所以在连接layers注意channel的改变,这个在下面的语句可以提现出来:

    def _make_layer(self, block, planes, num_blocks, stride):
        layers = []
        for i in range(num_blocks):
            if i == 0:
                layers.append(block(self.in_planes, planes, stride))
            else:
                layers.append(block(planes, planes, 1))

        self.in_planes = planes
        return nn.Sequential(*layers)

注意二:

1、在跳跃连接时,上一basicblock的输出和当下basicblock的输出大小不一样,没办法进行加和运算。所以在shortcut时操作使得第2、3、4block的第一个basicblock的输出进行卷积操作:stride=2,使得输出结果缩小一半。
2、与此同时,通道数也是不一样的,也要进行卷积操作。这个在每一个block都要进行卷积操作,使得通道数一致。

        if stride != 1 or in_planes != planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride),
                nn.BatchNorm2d(planes)
            )
        else:
            self.shortcut = nn.Sequential()

参考文献

【1】He K , Zhang X , Ren S , et al. Deep Residual Learning for Image Recognition[C]// IEEE Conference on Computer Vision & Pattern Recognition. IEEE Computer Society, 2016.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/141313.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 数据绑定以及Container.DataItem几种方式与使用方法分析[通俗易懂]

    数据绑定以及Container.DataItem几种方式与使用方法分析[通俗易懂]灵活的运用数据绑定操作绑定到简单属性:绑定到集合:'runat="server">绑定到表达式:绑定到方法返回值:绑定到Hashtable:绑定到Arr

    2022年7月2日
    27
  • 屏幕录制软件推荐_能录屏的软件

    屏幕录制软件推荐_能录屏的软件我们经常会遇到一些场景,需要你向别人展示一些操作或是效果——例如告诉别人某某软件的配置步骤啊、刚设计出来网站的动画效果怎么样啊、某某电影里面的一个镜头多么经典啊、打得大快人心的NBA绝杀瞬间是怎么回事

    2022年8月3日
    7
  • goland 2021.2.3 服务器激活(在线激活)

    goland 2021.2.3 服务器激活(在线激活),https://javaforall.net/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

    2022年3月14日
    367
  • C语言小游戏之扫雷完整版

    C语言小游戏之扫雷完整版C语言小游戏之扫雷一.游戏介绍二.游戏步骤及实现的功能1.初始化雷盘2.打印雷盘3.随机布置雷4.玩家排雷5.防止玩家第一次被炸死6.统计所选位置周围八个位置中雷的个数7.拓展已选位置周围的区域8.标记雷及取消标记一.游戏介绍看到这张图片,相信很多小伙伴都非常熟悉,很多小伙伴都玩过扫雷这个小游戏,扫雷是一款益智类游戏,在放松娱乐的同时可以锻炼各位小伙伴的智商。游戏规则:如上图,玩家需要在不被炸死的前提下找出图中雷的位置,若能找出所有雷,则游戏胜利,若不幸踩到雷则被炸死。注:先介绍,后文会有完整代码

    2022年5月19日
    43
  • Particle_filter 粒子滤波器 的学习笔记

    Particle_filter 粒子滤波器 的学习笔记粒子滤波是一种基于蒙特卡洛模拟的非线性滤波方法,其核心思想是用随机采样的粒子表达概率密度分布。粒子滤波的三个重要步骤为:1)粒子采样,从建议分布中抽取一组粒子;2)粒子加权,根据观测概率分布,重要

    2022年8月6日
    4
  • painless语法入门[通俗易懂]

    painless语法painless基础结构”script”:{“lang”:”…”,”source”|”id”:”…”,”params”:{…}}lang:定义脚本使用的语言,默认painlesssource,id:脚本的主体,source后面跟着内联的脚本代码,id后面跟着脚本的id,具体代码存在于脚本id对应的代码中params:定义一些变量的值,使用params可以减少脚本的编译次数.因为如果

    2022年4月18日
    453

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号