Resnet 18网络模型[通俗易懂]

Resnet 18网络模型[通俗易懂]1.残差网络:(Resnet)残差块:让我们聚焦于神经网络局部:如图左侧所示,假设我们的原始输入为x,而希望学出的理想映射为f(x)(作为上方激活函数的输入)。左图虚线框中的部分需要直接拟合出该映射f(x),而右图虚线框中的部分则需要拟合出残差映射f(x)−x。残差映射在现实中往往更容易优化。以本节开头提到的恒等映射作为我们希望学出的理想映射f(x),我们只需将右图虚线框内上方的加权运算(如仿射)的权重和偏置参数设成0,那么f(x)即为恒等映射。实际中,当理想映射f(x)极接近于恒等映..

大家好,又见面了,我是你们的朋友全栈君。

1. 残差网络:(Resnet) 

残差块:
 

让我们聚焦于神经网络局部:如图左侧所示,假设我们的原始输入为x,而希望学出的理想映射为f(x)(作为上方激活函数的输入)。左图虚线框中的部分需要直接拟合出该映射f(x),而右图虚线框中的部分则需要拟合出残差映射f(x)−x。 残差映射在现实中往往更容易优化。 以本节开头提到的恒等映射作为我们希望学出的理想映射f(x),我们只需将右图虚线框内上方的加权运算(如仿射)的权重和偏置参数设成0,那么f(x)即为恒等映射。 实际中,当理想映射f(x)极接近于恒等映射时,残差映射也易于捕捉恒等映射的细微波动。右图是ResNet的基础架构–残差块(residual block)。 在残差块中,输入可通过跨层数据线路更快地向前传播

Resnet 18网络模型[通俗易懂]

 

ResNet沿用了VGG完整的3×3卷积层设计。 残差块里首先有2个有相同输出通道数的3×3卷积层。 每个卷积层后接一个批量规范化层和ReLU激活函数。 然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。 这样的设计要求2个卷积层的输出与输入形状一样,从而使它们可以相加。 如果想改变通道数,就需要引入一个额外的1×1卷积层来将输入变换成需要的形状后再做相加运算。 残差块的实现如下

Resnet 18网络模型[通俗易懂]

 

Pytorch代码

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Residual(nn.Module):  #@save
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,
                               kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)

验证:1.输入和输出形状一致的情况

blk = Residual(3,3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
Y.shape

结果:

torch.Size([4, 3, 6, 6])

验证:2.增加输出通道数的同时,减半输出的高和宽

blk = Residual(3,6, use_1x1conv=True, strides=2)
blk(X).shape

 

结果:

torch.Size([4, 6, 3, 3])

Resnet18:

18主要指的是带有权重的,包括卷积层和全连接层,不包括池化层和BN层。(BN层是有参数的)

Resnet 18网络模型[通俗易懂]

ResNet的前两层跟之前介绍的GoogLeNet中的一样: 在输出通道数为64、步幅为2的7×7卷积层后,接步幅为2的3×33×3的最大汇聚层。 不同之处在于ResNet每个卷积层后增加了批量规范化层。

 ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。

(注意每个残差块的使用,第一次是通道数的变化,所以加入一层卷积层,第二次通道数不变化,所以不要用到卷积层,直接将输入加到输出)

接着在ResNet加入所有残差块,这里每个模块使用2个残差块

 Resnet 18网络模型[通俗易懂]

 Pytorch代码实现:

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

def resnet_block(input_channels, num_channels, num_residuals,
                 first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,
                                use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk


b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

net = nn.Sequential(b1, b2, b3, b4, b5,
                    nn.AdaptiveAvgPool2d((1,1)),
                    nn.Flatten(), nn.Linear(512, 10))

验证代码:

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)

结果:

Sequential output shape:     torch.Size([1, 64, 56, 56])
Sequential output shape:     torch.Size([1, 64, 56, 56])
Sequential output shape:     torch.Size([1, 128, 28, 28])
Sequential output shape:     torch.Size([1, 256, 14, 14])
Sequential output shape:     torch.Size([1, 512, 7, 7])
AdaptiveAvgPool2d output shape:      torch.Size([1, 512, 1, 1])
Flatten output shape:        torch.Size([1, 512])
Linear output shape:         torch.Size([1, 10])
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/141461.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 怎么查看matlab函数的源代码_matlab源代码怎么用

    怎么查看matlab函数的源代码_matlab源代码怎么用如何查看MATLAB函数的源代码   大家都知道MATLAB是开源的,所有的函数源代码都是可以查看的。但是,对于初学者来说,可能还不知道如何查看MATLAB函数的源代码。函数之  type   假设需要查看function_name的源代码,在命令窗口中键入 type  function_name  即:>>typeimreadfunction[X,map,alp

    2022年10月4日
    0
  • a算法解决八数码实验报告_人工智能核心算法

    a算法解决八数码实验报告_人工智能核心算法实验一A*算法求解8数码问题一、实验目的熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。二、实验原理A*算法是一种启发式图搜索算法,其特点在于对估价函数的定义上。对于一般的启发式图搜索,总是选择估价函数f值最小的节点作为扩展节点。因此,f是根据需要找到一条最小代价路径的观点来估算节点的,所以,可考虑每个节点n的估价函数值为两个分量:从起始节点到节点n的实际代价g(n)以及从节点n到达目标节点的估价代价h(n),且hn≤h*n,h*n

    2022年10月30日
    0
  • 找不到springapplication_idea显示找不到或无法加载主类

    找不到springapplication_idea显示找不到或无法加载主类学习是一件反人性的事情最近计划重拾微服务的学习,于是使用官方的quickinitialization生成了一个示例项目,发现SpringApplication始终无法引入,当前使用的版本是SpringBoot2.0.3.RELEASE,仔细查了一下maven依赖,对应的spring-boot-2.0.3.Release.jar包里是存在SpringApplication类的。各…

    2022年9月9日
    0
  • 爆肝两万字,我爷爷都看的懂的《栈和队列》,建议各位观众姥爷先收藏

    爆肝两万字,我爷爷都看的懂的《栈和队列》,建议各位观众姥爷先收藏文章目录一、栈????栈的概念及结构????栈的实现二、队列????队列的概念及结构????队列的实现三、栈和队面试题四、概念选择题????1????2一、栈????栈的概念及结构栈:一种特殊的线性表,其只允许在固定的一端插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称库栈底。栈中的数据元素遵守后进先出LIFO(LastInFirstOut)的原则栈有两个经典的操作1️⃣压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。2️⃣出栈:栈的删除操

    2022年6月2日
    36
  • 手把手教你学DSP5509视频教程「建议收藏」

    手把手教你学DSP5509视频教程「建议收藏」链接:https://pan.baidu.com/s/1GwRgSKOm_4wKkNUS65iJrA提取码:ybdy

    2022年5月5日
    47
  • 挂载和远程访问Windows7实验

    挂载和远程访问Windows7实验

    2021年5月25日
    123

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号