python中griddata的外插值_python中griddata的外插值_griddata二维插值

python中griddata的外插值_python中griddata的外插值_griddata二维插值”””SimpleN-Dinterpolation..versionadded::0.9″””##Copyright(C)PauliVirtanen,2010.##DistributedunderthesameBSDlicenseasScipy.###Note:thisfileshouldberunthroughtheMakotemplateeng…

大家好,又见面了,我是你们的朋友全栈君。

“””Simple N-D interpolation

.. versionadded:: 0.9″””

#

#Copyright (C) Pauli Virtanen, 2010.#

#Distributed under the same BSD license as Scipy.#

#

#Note: this file should be run through the Mako template engine before#feeding it to Cython.#

#Run “generate_qhull.py“ to regenerate the “qhull.c“ file#cimport cythonfromlibc.float cimport DBL_EPSILONfromlibc.math cimport fabs, sqrtimportnumpy as npimportscipy.spatial.qhull as qhull

cimport scipy.spatial.qhull as qhullimportwarnings#——————————————————————————#Numpy etc.#——————————————————————————

cdef externfrom “numpy/ndarrayobject.h”:

cdef enum:

NPY_MAXDIMS

ctypedef fused double_or_complex:

double

double complex#——————————————————————————#Interpolator base class#——————————————————————————

classNDInterpolatorBase(object):”””Common routines for interpolators.

.. versionadded:: 0.9″””

def __init__(self, points, values, fill_value=np.nan, ndim=None,

rescale=False, need_contiguous=True, need_values=True):”””Check shape of points and values arrays, and reshape values to

(npoints, nvalues). Ensure the `points` and values arrays are

C-contiguous, and of correct type.”””

ifisinstance(points, qhull.Delaunay):#Precomputed triangulation was passed in

ifrescale:raise ValueError(“Rescaling is not supported when passing”

“a Delaunay triangulation as “points“.”)

self.tri=points

points=points.pointselse:

self.tri=None

points=_ndim_coords_from_arrays(points)

values=np.asarray(values)

_check_init_shape(points, values, ndim=ndim)ifneed_contiguous:

points= np.ascontiguousarray(points, dtype=np.double)ifneed_values:

self.values_shape= values.shape[1:]if values.ndim == 1:

self.values=values[:,None]elif values.ndim == 2:

self.values=valueselse:

self.values=values.reshape(values.shape[0],

np.prod(values.shape[1:]))#Complex or real?

self.is_complex =np.issubdtype(self.values.dtype, np.complexfloating)ifself.is_complex:ifneed_contiguous:

self.values=np.ascontiguousarray(self.values,

dtype=np.complex128)

self.fill_value=complex(fill_value)else:ifneed_contiguous:

self.values= np.ascontiguousarray(self.values, dtype=np.double)

self.fill_value=float(fill_value)if notrescale:

self.scale=None

self.points=pointselse:#scale to unit cube centered at 0

self.offset = np.mean(points, axis=0)

self.points= points -self.offset

self.scale= self.points.ptp(axis=0)

self.scale[~(self.scale > 0)] = 1.0 #avoid division by 0

self.points /=self.scaledef_check_call_shape(self, xi):

xi=np.asanyarray(xi)if xi.shape[-1] != self.points.shape[1]:raise ValueError(“number of dimensions in xi does not match x”)returnxidef_scale_x(self, xi):if self.scale isNone:returnxielse:return (xi – self.offset) /self.scaledef __call__(self, *args):”””interpolator(xi)

Evaluate interpolator at given points.

Parameters

———-

x1, x2, … xn: array-like of float

Points where to interpolate data at.

x1, x2, … xn can be array-like of float with broadcastable shape.

or x1 can be array-like of float with shape “(…, ndim)“”””xi= _ndim_coords_from_arrays(args, ndim=self.points.shape[1])

xi=self._check_call_shape(xi)

shape=xi.shape

xi= xi.reshape(-1, shape[-1])

xi= np.ascontiguousarray(xi, dtype=np.double)

xi=self._scale_x(xi)ifself.is_complex:

r=self._evaluate_complex(xi)else:

r=self._evaluate_double(xi)return np.asarray(r).reshape(shape[:-1] +self.values_shape)

cpdef _ndim_coords_from_arrays(points, ndim=None):”””Convert a tuple of coordinate arrays to a (…, ndim)-shaped array.”””cdef ssize_t j, nif isinstance(points, tuple) and len(points) == 1:#handle argument tuple

points =points[0]ifisinstance(points, tuple):

p= np.broadcast_arrays(*points)

n=len(p)for j in range(1, n):if p[j].shape !=p[0].shape:raise ValueError(“coordinate arrays do not have the same shape”)

points= np.empty(p[0].shape + (len(points),), dtype=float)for j, item inenumerate(p):

points[…,j]=itemelse:

points=np.asanyarray(points)if points.ndim == 1:if ndim isNone:

points= points.reshape(-1, 1)else:

points= points.reshape(-1, ndim)returnpoints

cdef _check_init_shape(points, values, ndim=None):”””Check shape of points and values arrays”””

if values.shape[0] !=points.shape[0]:raise ValueError(“different number of values and points”)if points.ndim != 2:raise ValueError(“invalid shape for input data points”)if points.shape[1] < 2:raise ValueError(“input data must be at least 2-D”)if ndim is not None and points.shape[1] !=ndim:raise ValueError(“this mode of interpolation available only for”

“%d-D data” %ndim)#——————————————————————————#Linear interpolation in N-D#——————————————————————————

classLinearNDInterpolator(NDInterpolatorBase):”””LinearNDInterpolator(points, values, fill_value=np.nan, rescale=False)

Piecewise linear interpolant in N dimensions.

.. versionadded:: 0.9

Methods

——-

__call__

Parameters

———-

points : ndarray of floats, shape (npoints, ndims); or Delaunay

Data point coordinates, or a precomputed Delaunay triangulation.

values : ndarray of float or complex, shape (npoints, …)

Data values.

fill_value : float, optional

Value used to fill in for requested points outside of the

convex hull of the input points. If not provided, then

the default is “nan“.

rescale : bool, optional

Rescale points to unit cube before performing interpolation.

This is useful if some of the input dimensions have

incommensurable units and differ by many orders of magnitude.

Notes

—–

The interpolant is constructed by triangulating the input data

with Qhull [1]_, and on each triangle performing linear

barycentric interpolation.

Examples

——–

We can interpolate values on a 2D plane:

>>> from scipy.interpolate import LinearNDInterpolator

>>> import matplotlib.pyplot as plt

>>> np.random.seed(0)

>>> x = np.random.random(10) – 0.5

>>> y = np.random.random(10) – 0.5

>>> z = np.hypot(x, y)

>>> X = np.linspace(min(x), max(x))

>>> Y = np.linspace(min(y), max(y))

>>> X, Y = np.meshgrid(X, Y) # 2D grid for interpolation

>>> interp = LinearNDInterpolator(list(zip(x, y)), z)

>>> Z = interp(X, Y)

>>> plt.pcolormesh(X, Y, Z, shading=’auto’)

>>> plt.plot(x, y, “ok”, label=”input point”)

>>> plt.legend()

>>> plt.colorbar()

>>> plt.axis(“equal”)

>>> plt.show()

See also

——–

griddata :

Interpolate unstructured D-D data.

NearestNDInterpolator :

Nearest-neighbor interpolation in N dimensions.

CloughTocher2DInterpolator :

Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.

References

———-

.. [1] http://www.qhull.org/”””

def __init__(self, points, values, fill_value=np.nan, rescale=False):

NDInterpolatorBase.__init__(self, points, values, fill_value=fill_value,

rescale=rescale)if self.tri isNone:

self.tri=qhull.Delaunay(self.points)def_evaluate_double(self, xi):return self._do_evaluate(xi, 1.0)def_evaluate_complex(self, xi):return self._do_evaluate(xi, 1.0j)

@cython.boundscheck(False)

@cython.wraparound(False)def _do_evaluate(self, const double[:,::1] xi, double_or_complex dummy):

cdef const double_or_complex[:,::1] values =self.values

cdef double_or_complex[:,::1] out

cdef const double[:,::1] points =self.points

cdef const int[:,::1] simplices =self.tri.simplices

cdef double c[NPY_MAXDIMS]

cdef double_or_complex fill_value

cdef int i, j, k, m, ndim, isimplex, inside, start, nvalues

cdef qhull.DelaunayInfo_t info

cdef double eps, eps_broad

ndim= xi.shape[1]

start=0

fill_value=self.fill_value

qhull._get_delaunay_info(&info, self.tri, 1, 0, 0)

out= np.empty((xi.shape[0], self.values.shape[1]),

dtype=self.values.dtype)

nvalues= out.shape[1]

eps= 100 *DBL_EPSILON

eps_broad=sqrt(DBL_EPSILON)

with nogil:for i inrange(xi.shape[0]):#1) Find the simplex

isimplex= qhull._find_simplex(&info, c,&xi[0,0] + i*ndim,&start, eps, eps_broad)#2) Linear barycentric interpolation

if isimplex == -1:#don’t extrapolate

for k inrange(nvalues):

out[i,k]=fill_valuecontinue

for k inrange(nvalues):

out[i,k]=0for j in range(ndim+1):for k inrange(nvalues):

m=simplices[isimplex,j]

out[i,k]= out[i,k] + c[j] *values[m,k]returnout#——————————————————————————#Gradient estimation in 2D#——————————————————————————

classGradientEstimationWarning(Warning):pass@cython.cdivision(True)

cdef int _estimate_gradients_2d_global(qhull.DelaunayInfo_t*d, double *data,

int maxiter, double tol,

double*y) nogil:”””Estimate gradients of a function at the vertices of a 2d triangulation.

Parameters

———-

info : input

Triangulation in 2D

data : input

Function values at the vertices

maxiter : input

Maximum number of Gauss-Seidel iterations

tol : input

Absolute / relative stop tolerance

y : output, shape (npoints, 2)

Derivatives [F_x, F_y] at the vertices

Returns

——-

num_iterations

Number of iterations if converged, 0 if maxiter reached

without convergence

Notes

—–

This routine uses a re-implementation of the global approximate

curvature minimization algorithm described in [Nielson83] and [Renka84].

References

———-

.. [Nielson83] G. Nielson,

”A method for interpolating scattered data based upon a minimum norm

network”.

Math. Comp., 40, 253 (1983).

.. [Renka84] R. J. Renka and A. K. Cline.

”A Triangle-based C1 interpolation method.”,

Rocky Mountain J. Math., 14, 223 (1984).”””cdef double Q[2*2]

cdef double s[2]

cdef double r[2]

cdef int ipoint, iiter, k, ipoint2, jpoint2

cdef double f1, f2, df2, ex, ey, L, L3, det, err, change#initialize

for ipoint in range(2*d.npoints):

y[ipoint]=0# #Main point:

# #Z = sum_T sum_{E in T} int_E |W”|^2 = min!

# #where W” is the second derivative of the Clough-Tocher

#interpolant to the direction of the edge E in triangle T.

# #The minimization is done iteratively: for each vertex V,

#the sum

# #Z_V = sum_{E connected to V} int_E |W”|^2

# #is minimized separately, using existing values at other V.

# #Since the interpolant can be written as

# #W(x) = f(x) + w(x)^T y

# #where y = [ F_x(V); F_y(V) ], it is clear that the solution to

#the local problem is is given as a solution of the 2×2 matrix

#equation.

# #Here, we use the Clough-Tocher interpolant, which restricted to

#a single edge is

# #w(x) = (1 – x)**3 * f1

#+ x*(1 – x)**2 * (df1 + 3*f1)

#+ x**2*(1 – x) * (df2 + 3*f2)

#+ x**3 * f2

# #where f1, f2 are values at the vertices, and df1 and df2 are

#derivatives along the edge (away from the vertices).

# #As a consequence, one finds

# #L^3 int_{E} |W”|^2 = y^T A y + 2 B y + C

# #with

# #A = [4, -2; -2, 4]

#B = [6*(f1 – f2), 6*(f2 – f1)]

#y = [df1, df2]

#L = length of edge E

# #and C is not needed for minimization. Since df1 = dF1.E, df2 = -dF2.E,

#with dF1 = [F_x(V_1), F_y(V_1)], and the edge vector E = V2 – V1,

#we have

# #Z_V = dF1^T Q dF1 + 2 s.dF1 + const.

# #which is minimized by

# #dF1 = -Q^{-1} s

# #where

# #Q = sum_E [A_11 E E^T]/L_E^3 = 4 sum_E [E E^T]/L_E^3

#s = sum_E [ B_1 + A_21 df2] E /L_E^3

#= sum_E [ 6*(f1 – f2) + 2*(E.dF2)] E / L_E^3

#

#Gauss-Seidel

for iiter inrange(maxiter):

err=0for ipoint inrange(d.npoints):for k in range(2*2):

Q[k]=0for k in range(2):

s[k]=0#walk over neighbours of given point

for jpoint2 inrange(d.vertex_neighbors_indptr[ipoint],

d.vertex_neighbors_indptr[ipoint+1]):

ipoint2=d.vertex_neighbors_indices[jpoint2]#edge

ex = d.points[2*ipoint2 + 0] – d.points[2*ipoint +0]

ey= d.points[2*ipoint2 + 1] – d.points[2*ipoint + 1]

L= sqrt(ex**2 + ey**2)

L3= L*L*L#data at vertices

f1 =data[ipoint]

f2=data[ipoint2]#scaled gradient projections on the edge

df2 = -ex*y[2*ipoint2 + 0] – ey*y[2*ipoint2 + 1]#edge sum

Q[0] += 4*ex*ex /L3

Q[1] += 4*ex*ey /L3

Q[3] += 4*ey*ey /L3

s[0]+= (6*(f1 – f2) – 2*df2) * ex /L3

s[1] += (6*(f1 – f2) – 2*df2) * ey /L3

Q[2] = Q[1]#solve

det= Q[0]*Q[3] – Q[1]*Q[2]

r[0]= ( Q[3]*s[0] – Q[1]*s[1])/det

r[1] = (-Q[2]*s[0] + Q[0]*s[1])/det

change= max(fabs(y[2*ipoint + 0] +r[0]),

fabs(y[2*ipoint + 1] + r[1]))

y[2*ipoint + 0] = -r[0]

y[2*ipoint + 1] = -r[1]#relative/absolute error

change /= max(1.0, max(fabs(r[0]), fabs(r[1])))

err=max(err, change)if err

#Didn’t converge before maxiter

return0

@cython.boundscheck(False)

@cython.wraparound(False)

cpdef estimate_gradients_2d_global(tri, y, int maxiter=400, double tol=1e-6):

cdef const double[:,::1] data

cdef double[:,:,::1] grad

cdef qhull.DelaunayInfo_t info

cdef int k, ret, nvalues

y=np.asanyarray(y)if y.shape[0] !=tri.npoints:raise ValueError(“‘y’ has a wrong number of items”)ifnp.issubdtype(y.dtype, np.complexfloating):

rg= estimate_gradients_2d_global(tri, y.real, maxiter=maxiter, tol=tol)

ig= estimate_gradients_2d_global(tri, y.imag, maxiter=maxiter, tol=tol)

r= np.zeros(rg.shape, dtype=complex)

r.real=rg

r.imag=igreturnr

y_shape=y.shapeif y.ndim == 1:

y=y[:,None]

y= y.reshape(tri.npoints, -1).T

y= np.ascontiguousarray(y, dtype=np.double)

yi= np.empty((y.shape[0], y.shape[1], 2))

data=y

grad=yi

qhull._get_delaunay_info(&info, tri, 0, 0, 1)

nvalues=data.shape[0]for k inrange(nvalues):

with nogil:

ret=_estimate_gradients_2d_global(&info,&data[k,0],

maxiter,

tol,&grad[k,0,0])if ret ==0:

warnings.warn(“Gradient estimation did not converge,”

“the results may be inaccurate”,

GradientEstimationWarning)return yi.transpose(1, 0, 2).reshape(y_shape + (2,))#——————————————————————————#Cubic interpolation in 2D#——————————————————————————

@cython.cdivision(True)

cdef double_or_complex _clough_tocher_2d_single(qhull.DelaunayInfo_t*d,

int isimplex,

double*b,

double_or_complex*f,

double_or_complex*df) nogil:”””Evaluate Clough-Tocher interpolant on a 2D triangle.

Parameters

———-

d :

Delaunay info

isimplex : int

Triangle to evaluate on

b : shape (3,)

Barycentric coordinates of the point on the triangle

f : shape (3,)

Function values at vertices

df : shape (3, 2)

Gradient values at vertices

Returns

——-

w :

Value of the interpolant at the given point

References

———-

.. [CT] See, for example,

P. Alfeld,

”A trivariate Clough-Tocher scheme for tetrahedral data”.

Computer Aided Geometric Design, 1, 169 (1984);

G. Farin,

”Triangular Bernstein-Bezier patches”.

Computer Aided Geometric Design, 3, 83 (1986).”””cdef double_or_complex \

c3000, c0300, c0030, c0003, \

c2100, c2010, c2001, c0210, c0201, c0021, \

c1200, c1020, c1002, c0120, c0102, c0012, \

c1101, c1011, c0111

cdef double_or_complex \

f1, f2, f3, df12, df13, df21, df23, df31, df32

cdef double g[3]

cdef double \

e12x, e12y, e23x, e23y, e31x, e31y, \

e14x, e14y, e24x, e24y, e34x, e34y

cdef double_or_complex w

cdef double minval

cdef double b1, b2, b3, b4

cdef int k, itri

cdef double c[3]

cdef double y[2]#XXX: optimize + refactor this!

e12x= (+ d.points[0 + 2*d.simplices[3*isimplex + 1]]- d.points[0 + 2*d.simplices[3*isimplex +0]])

e12y= (+ d.points[1 + 2*d.simplices[3*isimplex + 1]]- d.points[1 + 2*d.simplices[3*isimplex +0]])

e23x= (+ d.points[0 + 2*d.simplices[3*isimplex + 2]]- d.points[0 + 2*d.simplices[3*isimplex + 1]])

e23y= (+ d.points[1 + 2*d.simplices[3*isimplex + 2]]- d.points[1 + 2*d.simplices[3*isimplex + 1]])

e31x= (+ d.points[0 + 2*d.simplices[3*isimplex +0]]- d.points[0 + 2*d.simplices[3*isimplex + 2]])

e31y= (+ d.points[1 + 2*d.simplices[3*isimplex +0]]- d.points[1 + 2*d.simplices[3*isimplex + 2]])

e14x= (e12x – e31x)/3e14y= (e12y – e31y)/3e24x= (-e12x + e23x)/3e24y= (-e12y + e23y)/3e34x= (e31x – e23x)/3e34y= (e31y – e23y)/3f1=f[0]

f2= f[1]

f3= f[2]

df12= +(df[2*0+0]*e12x + df[2*0+1]*e12y)

df21= -(df[2*1+0]*e12x + df[2*1+1]*e12y)

df23= +(df[2*1+0]*e23x + df[2*1+1]*e23y)

df32= -(df[2*2+0]*e23x + df[2*2+1]*e23y)

df31= +(df[2*2+0]*e31x + df[2*2+1]*e31y)

df13= -(df[2*0+0]*e31x + df[2*0+1]*e31y)

c3000=f1

c2100= (df12 + 3*c3000)/3c2010= (df13 + 3*c3000)/3c0300=f2

c1200= (df21 + 3*c0300)/3c0210= (df23 + 3*c0300)/3c0030=f3

c1020= (df31 + 3*c0030)/3c0120= (df32 + 3*c0030)/3c2001= (c2100 + c2010 + c3000)/3c0201= (c1200 + c0300 + c0210)/3c0021= (c1020 + c0120 + c0030)/3

# #Now, we need to impose the condition that the gradient of the spline

#to some direction `w` is a linear function along the edge.

# #As long as two neighbouring triangles agree on the choice of the

#direction `w`, this ensures global C1 differentiability.

#Otherwise, the choice of the direction is arbitrary (except that

#it should not point along the edge, of course).

# #In [CT]_, it is suggested to pick `w` as the normal of the edge.

#This choice is given by the formulas

# #w_12 = E_24 + g[0] * E_23

#w_23 = E_34 + g[1] * E_31

#w_31 = E_14 + g[2] * E_12

# #g[0] = -(e24x*e23x + e24y*e23y) / (e23x**2 + e23y**2)

#g[1] = -(e34x*e31x + e34y*e31y) / (e31x**2 + e31y**2)

#g[2] = -(e14x*e12x + e14y*e12y) / (e12x**2 + e12y**2)

# #However, this choice gives an interpolant that is *not*

#invariant under affine transforms. This has some bad

#consequences: for a very narrow triangle, the spline can

#develops huge oscillations. For instance, with the input data

# #[(0, 0), (0, 1), (eps, eps)], eps = 0.01

#F = [0, 0, 1]

#dF = [(0,0), (0,0), (0,0)]

# #one observes that as eps -> 0, the absolute maximum value of the

#interpolant approaches infinity.

# #So below, we aim to pick affine invariant `g[k]`.

#We choose

# #w = V_4′ – V_4

# #where V_4 is the centroid of the current triangle, and V_4′ the

#centroid of the neighbour. Since this quantity transforms similarly

#as the gradient under affine transforms, the resulting interpolant

#is affine-invariant. Moreover, two neighbouring triangles clearly

#always agree on the choice of `w` (sign is unimportant), and so

#this choice also makes the interpolant C1.

# #The drawback here is a performance penalty, since we need to

#peek into neighbouring triangles.

#

for k in range(3):

itri= d.neighbors[3*isimplex +k]if itri == -1:#No neighbour.

#Compute derivative to the centroid direction (e_12 + e_13)/2.

g[k] = -1./2

continue

#Centroid of the neighbour, in our local barycentric coordinates

y[0]= (+ d.points[0 + 2*d.simplices[3*itri +0]]+ d.points[0 + 2*d.simplices[3*itri + 1]]+ d.points[0 + 2*d.simplices[3*itri + 2]]) / 3y[1] = (+ d.points[1 + 2*d.simplices[3*itri +0]]+ d.points[1 + 2*d.simplices[3*itri + 1]]+ d.points[1 + 2*d.simplices[3*itri + 2]]) / 3qhull._barycentric_coordinates(2, d.transform + isimplex*2*3, y, c)#Rewrite V_4′-V_4 = const*[(V_4-V_2) + g_i*(V_3 – V_2)]

#Now, observe that the results can be written *in terms of

#barycentric coordinates*. Barycentric coordinates stay

#invariant under affine transformations, so we can directly

#conclude that the choice below is affine-invariant.

if k ==0:

g[k]= (2*c[2] + c[1] – 1) / (2 – 3*c[2] – 3*c[1])elif k == 1:

g[k]= (2*c[0] + c[2] – 1) / (2 – 3*c[0] – 3*c[2])elif k == 2:

g[k]= (2*c[1] + c[0] – 1) / (2 – 3*c[1] – 3*c[0])

c0111= (g[0]*(-c0300 + 3*c0210 – 3*c0120 +c0030)+ (-c0300 + 2*c0210 – c0120 + c0021 + c0201))/2c1011= (g[1]*(-c0030 + 3*c1020 – 3*c2010 +c3000)+ (-c0030 + 2*c1020 – c2010 + c2001 + c0021))/2c1101= (g[2]*(-c3000 + 3*c2100 – 3*c1200 +c0300)+ (-c3000 + 2*c2100 – c1200 + c2001 + c0201))/2c1002= (c1101 + c1011 + c2001)/3c0102= (c1101 + c0111 + c0201)/3c0012= (c1011 + c0111 + c0021)/3c0003= (c1002 + c0102 + c0012)/3

#extended barycentric coordinates

minval =b[0]for k in range(3):if b[k]

minval=b[k]

b1= b[0] -minval

b2= b[1] -minval

b3= b[2] -minval

b4= 3*minval#evaluate the polynomial — the stupid and ugly way to do it,

#one of the 4 coordinates is in fact zero

w = (b1**3*c3000 + 3*b1**2*b2*c2100 + 3*b1**2*b3*c2010 +

3*b1**2*b4*c2001 + 3*b1*b2**2*c1200 +

6*b1*b2*b4*c1101 + 3*b1*b3**2*c1020 + 6*b1*b3*b4*c1011 +

3*b1*b4**2*c1002 + b2**3*c0300 + 3*b2**2*b3*c0210 +

3*b2**2*b4*c0201 + 3*b2*b3**2*c0120 + 6*b2*b3*b4*c0111 +

3*b2*b4**2*c0102 + b3**3*c0030 + 3*b3**2*b4*c0021 +

3*b3*b4**2*c0012 + b4**3*c0003)returnwclassCloughTocher2DInterpolator(NDInterpolatorBase):”””CloughTocher2DInterpolator(points, values, tol=1e-6)

Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.

.. versionadded:: 0.9

Methods

——-

__call__

Parameters

———-

points : ndarray of floats, shape (npoints, ndims); or Delaunay

Data point coordinates, or a precomputed Delaunay triangulation.

values : ndarray of float or complex, shape (npoints, …)

Data values.

fill_value : float, optional

Value used to fill in for requested points outside of the

convex hull of the input points. If not provided, then

the default is “nan“.

tol : float, optional

Absolute/relative tolerance for gradient estimation.

maxiter : int, optional

Maximum number of iterations in gradient estimation.

rescale : bool, optional

Rescale points to unit cube before performing interpolation.

This is useful if some of the input dimensions have

incommensurable units and differ by many orders of magnitude.

Notes

—–

The interpolant is constructed by triangulating the input data

with Qhull [1]_, and constructing a piecewise cubic

interpolating Bezier polynomial on each triangle, using a

Clough-Tocher scheme [CT]_. The interpolant is guaranteed to be

continuously differentiable.

The gradients of the interpolant are chosen so that the curvature

of the interpolating surface is approximatively minimized. The

gradients necessary for this are estimated using the global

algorithm described in [Nielson83]_ and [Renka84]_.

Examples

——–

We can interpolate values on a 2D plane:

>>> from scipy.interpolate import CloughTocher2DInterpolator

>>> import matplotlib.pyplot as plt

>>> np.random.seed(0)

>>> x = np.random.random(10) – 0.5

>>> y = np.random.random(10) – 0.5

>>> z = np.hypot(x, y)

>>> X = np.linspace(min(x), max(x))

>>> Y = np.linspace(min(y), max(y))

>>> X, Y = np.meshgrid(X, Y) # 2D grid for interpolation

>>> interp = CloughTocher2DInterpolator(list(zip(x, y)), z)

>>> Z = interp(X, Y)

>>> plt.pcolormesh(X, Y, Z, shading=’auto’)

>>> plt.plot(x, y, “ok”, label=”input point”)

>>> plt.legend()

>>> plt.colorbar()

>>> plt.axis(“equal”)

>>> plt.show()

See also

——–

griddata :

Interpolate unstructured D-D data.

LinearNDInterpolator :

Piecewise linear interpolant in N dimensions.

NearestNDInterpolator :

Nearest-neighbor interpolation in N dimensions.

References

———-

.. [1] http://www.qhull.org/

.. [CT] See, for example,

P. Alfeld,

”A trivariate Clough-Tocher scheme for tetrahedral data”.

Computer Aided Geometric Design, 1, 169 (1984);

G. Farin,

”Triangular Bernstein-Bezier patches”.

Computer Aided Geometric Design, 3, 83 (1986).

.. [Nielson83] G. Nielson,

”A method for interpolating scattered data based upon a minimum norm

network”.

Math. Comp., 40, 253 (1983).

.. [Renka84] R. J. Renka and A. K. Cline.

”A Triangle-based C1 interpolation method.”,

Rocky Mountain J. Math., 14, 223 (1984).”””

def __init__(self, points, values, fill_value=np.nan,

tol=1e-6, maxiter=400, rescale=False):

NDInterpolatorBase.__init__(self, points, values, ndim=2,

fill_value=fill_value, rescale=rescale)if self.tri isNone:

self.tri=qhull.Delaunay(self.points)

self.grad=estimate_gradients_2d_global(self.tri, self.values,

tol=tol, maxiter=maxiter)def_evaluate_double(self, xi):return self._do_evaluate(xi, 1.0)def_evaluate_complex(self, xi):return self._do_evaluate(xi, 1.0j)

@cython.boundscheck(False)

@cython.wraparound(False)def _do_evaluate(self, const double[:,::1] xi, double_or_complex dummy):

cdef const double_or_complex[:,::1] values =self.values

cdef const double_or_complex[:,:,:] grad=self.grad

cdef double_or_complex[:,::1] out

cdef const double[:,::1] points =self.points

cdef const int[:,::1] simplices =self.tri.simplices

cdef double c[NPY_MAXDIMS]

cdef double_or_complex f[NPY_MAXDIMS+1]

cdef double_or_complex df[2*NPY_MAXDIMS+2]

cdef double_or_complex w

cdef double_or_complex fill_value

cdef int i, j, k, m, ndim, isimplex, inside, start, nvalues

cdef qhull.DelaunayInfo_t info

cdef double eps, eps_broad

ndim= xi.shape[1]

start=0

fill_value=self.fill_value

qhull._get_delaunay_info(&info, self.tri, 1, 1, 0)

out= np.zeros((xi.shape[0], self.values.shape[1]),

dtype=self.values.dtype)

nvalues= out.shape[1]

eps= 100 *DBL_EPSILON

eps_broad=sqrt(eps)

with nogil:for i inrange(xi.shape[0]):#1) Find the simplex

isimplex= qhull._find_simplex(&info, c,&xi[i,0],&start, eps, eps_broad)#2) Clough-Tocher interpolation

if isimplex == -1:#outside triangulation

for k inrange(nvalues):

out[i,k]=fill_valuecontinue

for k inrange(nvalues):for j in range(ndim+1):

f[j]=values[simplices[isimplex,j],k]

df[2*j] =grad[simplices[isimplex,j],k,0]

df[2*j+1] = grad[simplices[isimplex,j],k,1]

w= _clough_tocher_2d_single(&info, isimplex, c, f, df)

out[i,k]=wreturn out

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/141499.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 输入网址访问服务器详细流程

    输入网址访问服务器详细流程问题:以前遇到过一次输入一个网站打不开,该网站服务器没问题,换台电脑可以打开。这台电脑可以打开别的网站,就是打不开我要访问的网站。后来找到C:\Windows\System32\drivers\etc\hosts 这个文件,在该文件中找到该网址删掉就好了. 答案:   输入网址访问的时候,浏览器会进行解析域名,找对应的ip地址。那么首先就从本机C:\Windows\System…

    2022年6月16日
    36
  • JAVA中String的深入研究

    每次上网冲杯Java时,都能看到关于String无休无止的争论。还是觉得有必要让这个讨厌又很可爱的String美眉,赤裸裸的站在我们这些Java色狼面前了。嘿嘿….众所周知,String是由字符组成的串,在程序中使用频率很高。Java中的String是一个类,而并非基本数据类型。 不过她却不是普通的类哦!!! 【镜头1】 String对象的创建       1、关于

    2022年3月11日
    44
  • 【转载】How browsers work–Behind the scenes of modern web browsers (前端必读)

    【转载】How browsers work–Behind the scenes of modern web browsers (前端必读)

    2021年11月18日
    40
  • AD域资料介绍

    AD域资料介绍一、什么是AD?活动目录(ActiveDirectory)是面向WindowsStandardServer、WindowsEnterpriseServer以及WindowsDatacenterServer的目录服务。(ActiveDirectory不能运行在WindowsWebServer上,但是可以通过它对运行WindowsWebServer的计…

    2022年5月15日
    60
  • 万洲金业平台上炒黄金亏损了怎么办?「建议收藏」

    万洲金业平台上炒黄金亏损了怎么办?「建议收藏」  由于受国际行情变化影响,黄金市场很难长时间维持单边走势,因此金价起伏波动不断才是正确的打开方式。尽管黄金价格不断变化为人们营造了良好的盈利空间,但对于大多数人来说,尽管亏损是难以避免的,但真当风险来临,还是难以接受。所以今天就详细介绍一下当人们在万洲金业平台上发生了炒金亏损之后应该怎么办。万洲金业是一家专业的黄金交易平台,为人们提供了极为周到的黄金投资服务,也借助良好的市场表现成为了不少人的炒金选择。即便如此也不能代表平台客户不会发生黄金投资亏损。  在万洲金业平台上炒黄金,一旦发生了交易亏损,

    2022年6月15日
    84
  • 图像去色算法_matlab去雾算法

    图像去色算法_matlab去雾算法先上图看一些算法效果                                           上图中从左到右依次是原图、photoshop去色结果、Matlab的rgb2gray函数处理效果、取rgb均值的效果、使用香港中文大学论文(见下)的结果、Glundland论文(见下)的结果。还有

    2022年10月4日
    6

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号