Python 根据AIC准则定义向前逐步回归进行变量筛选(二)

Python 根据AIC准则定义向前逐步回归进行变量筛选(二)Python根据AIC准则定义向前逐步回归进行变量筛选(二)AIC简介AIC即赤池值,是衡量模型拟合优良性和模型复杂性的一种标准,在建立多元线性回归模型时,变量过多,且有不显著的变量时,可以使用AIC准则结合逐步回归进行变量筛选。AICD数学表达式如下:AIC=2p+n(log(SSE/n))AIC=2p+n(log(SSE/n))AIC=2p+n(log(SSE/n))其中,ppp…

大家好,又见面了,我是你们的朋友全栈君。

Python 根据AIC准则定义向前逐步回归进行变量筛选(二)

AIC简介

AIC即赤池值,是衡量模型拟合优良性和模型复杂性的一种标准,在建立多元线性回归模型时,变量过多,且有不显著的变量时,可以使用AIC准则结合逐步回归进行变量筛选。AICD数学表达式如下:
A I C = 2 p + n ( l o g ( S S E / n ) ) AIC=2p+n(log(SSE/n)) AIC=2p+n(log(SSE/n))
其中, p p p是进入模型当中的自变量个数, n n n为样本量, S S E SSE SSE是残差平方和,在 n n n固定的情况下, p p p越小, A I C AIC AIC越小, S S E SSE SSE越小, A I C AIC AIC越小,而 p p p越小代表着模型越简洁, S S E SSE SSE越小代表着模型越精准,即拟合度越好,综上所诉, A I C AIC AIC越小,即模型就越简洁和精准。

逐步回归

逐步回归分为三种,分别是向前逐步回归,向后逐步回归,逐步回归。向前逐步回归的特点是将自变量一个一个当如模型中,每当放入一个变量时,都利用相应的检验准则检验,当加入的变量不能使得模型变得更优良时,变量将会被剔除,如此不断迭代,直到没有适合的新变量加入为止。向后逐步回归的特点是,将所有变量都放入模型之后,一个一个的剔除变量,将某一变量拿出模型而使得模型更优良时,将会剔除此变量。如此反复迭代,直到没有合适的变量剔除为止。逐步回归则是结合了以上的向前和向后逐步回归的特点。

继上一篇的代码

import numpy as np
import pandas as pd
from sklearn.datasets import fetch_california_housing as fch  #加载加利福尼亚房屋价值数据
#加载线性回归需要的模块和库
import statsmodels.api as sm #最小二乘
from statsmodels.formula.api import ols #加载ols模型
data=fch() #导入数据
house_data=pd.DataFrame(data.data) #将自变量转换成dataframe格式,便于查看
house_data.columns=data.feature_names  #命名自变量
house_data.loc[:,"value"]=data.target #合并自变量,因变量数据
house_data.shape #查看数据量
house_data.head(10) #查看前10行数据
#分训练集测试集
import random
random.seed(123) #设立随机数种子
a=random.sample(range(len(house_data)),round(len(house_data)*0.3))
house_test=[]
for i in a:
    house_test.append(house_data.iloc[i])
house_test=pd.DataFrame(house_test)
house_train=house_data.drop(a)

定义向前逐步回归函数

#定义向前逐步回归函数
def forward_select(data,target):
    variate=set(data.columns)  #将字段名转换成字典类型
    variate.remove(target)  #去掉因变量的字段名
    selected=[]
    current_score,best_new_score=float('inf'),float('inf')  #目前的分数和最好分数初始值都为无穷大(因为AIC越小越好)
    #循环筛选变量
    while variate:
        aic_with_variate=[]
        for candidate in variate:  #逐个遍历自变量
            formula="{}~{}".format(target,"+".join(selected+[candidate]))  #将自变量名连接起来
            aic=ols(formula=formula,data=data).fit().aic  #利用ols训练模型得出aic值
            aic_with_variate.append((aic,candidate))  #将第每一次的aic值放进空列表
        aic_with_variate.sort(reverse=True)  #降序排序aic值
        best_new_score,best_candidate=aic_with_variate.pop()  #最好的aic值等于删除列表的最后一个值,以及最好的自变量等于列表最后一个自变量
        if current_score>best_new_score:  #如果目前的aic值大于最好的aic值
            variate.remove(best_candidate)  #移除加进来的变量名,即第二次循环时,不考虑此自变量了
            selected.append(best_candidate)  #将此自变量作为加进模型中的自变量
            current_score=best_new_score  #最新的分数等于最好的分数
            print("aic is {},continuing!".format(current_score))  #输出最小的aic值
        else:
            print("for selection over!")
            break
    formula="{}~{}".format(target,"+".join(selected))  #最终的模型式子
    print("final formula is {}".format(formula))
    model=ols(formula=formula,data=data).fit()
    return(model)

利用向前逐步回归筛选变量

forward_select(data=house_train,target="value")

在这里插入图片描述
最终保留了7个自变量,其实只是剔除了一个自变量,将这七个自变量放进模型里再运行一遍,查看模型结果

lm_1=ols("value~MedInc+HouseAge+Latitude+Longitude+AveBedrms+AveRooms+AveOccup",data=house_train).fit()
lm_1.summary()

在这里插入图片描述
由以上结果可以看出,其实模型的R方几乎没有变化。
本篇文章主要是想讲述如何利用statsmodels和AIC准则定义向前逐步回归函数筛选自变量,在日后遇到比较多自变量的时候,方便进行自变量筛选。

参考文献

常国珍,赵仁乾,张秋剑.Python数据科学技术详解于商业实战[M]. 北京:中国人民大学出版社,2018.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/142215.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • 缓存穿透,缓存击穿,缓存雪崩解决方案分析

    缓存穿透,缓存击穿,缓存雪崩解决方案分析前言设计一个缓存系统,不得不要考虑的问题就是:缓存穿透、缓存击穿与失效时的雪崩效应。缓存穿透缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个存在的数据每次请求都要到存储层去查询,失去了缓存的意义。在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞。解决方案

    2022年6月30日
    21
  • Java中print、printf、println的区别 详解

    Java中print、printf、println的区别 详解Java中print、printf、println的区别详解printf主要是继承了C语言的printf的一些特性,可以进行格式化输出print就是一般的标准输出,但是不换行println和print基本没什么差别,就是最后会换行System.out.printf(“thenumberis:d”,t);参照JAVAAPI的定义如下:’d’整数

    2022年7月7日
    27
  • Android之androidmainfest.xml配置文件详解

    Android之androidmainfest.xml配置文件详解

    2021年6月18日
    111
  • pycharmjieba库怎么安装_怎么下载jieba库

    pycharmjieba库怎么安装_怎么下载jieba库这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好!这是你第一次使用Markdown编辑器所展示的欢迎页。如果你想学习如何使用Mar

    2022年8月28日
    5
  • matlab做kmo检验的代码,进行kmo和Bartlett球形检验因子分析的SAS程序是什么呢,谢谢!…

    matlab做kmo检验的代码,进行kmo和Bartlett球形检验因子分析的SAS程序是什么呢,谢谢!…Anexcerptfromasampleoutputappearsbelow.InitialFactorMethod:MaximumLikelihoodSignificanceTestsBasedon19ObservationsPr>TestDFChi-SquareChiSqH0:Nocommo…

    2022年6月26日
    43
  • byte数组截取[通俗易懂]

    byte数组截取[通俗易懂]//原始数组byte[]bytes=ImageUtils.toByteArray(fromPaths[0]);//新数组byte[]b1=newbyte[bytes.length-80];//从原始数组80位置开始截取后面所有System.arraycopy(bytes,80,b1,0,bytes.length-80);BufferData2DbufferDat…

    2022年6月11日
    218

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号