概率论中 PDF,PMF,CDF的含义[通俗易懂]

概率论中 PDF,PMF,CDF的含义[通俗易懂]概率论中PDF,PMF,CDF的含义在概率论中,我们经常能碰到这样几个概念PDF,PMF,CDF,这里就简单介绍一下PDF:概率密度函数(probabilitydensityfunction),在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。概率密度函数都是针对连续性随机变量的,对于连续性随机变量,都是针对某一段区间的取值,在一个点的取值都是几乎为0的,所以我们研究连续性随机变量时,都是取变量在一段

大家好,又见面了,我是你们的朋友全栈君。

概率论中 PDF,PMF,CDF的含义

在概率论中,我们经常能碰到这样几个概念PDF,PMF,CDF,这里就简单介绍一下

PDF:概率密度函数(probability density function), 在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。

概率密度函数都是针对连续性随机变量的,对于连续性随机变量,都是针对某一段区间的取值,在一个点的取值都是几乎为0的,所以我们研究连续性随机变量时,都是取变量在一段区间的取值,然后可以通过概率密度函数进行计算。
而PDF他其实是CDF的导数。

PMF : 概率质量函数(probability mass function), 在概率论中,概率质量函数是离散随机变量在各特定取值上的概率。
PDF是针对连续型随机变量的,那么PMF则是针对离散型随机变量的,是变量在特定取值上的概率。

CDF : 累积分布函数 (cumulative distribution function),又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布。

累计分布函数则比较是说,我们取定一个值,计算变量小于这个值的概率。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/142325.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号