最小二乘法详细推导过程

最小二乘法详细推导过程转载自:http://blog.csdn.net/marsjohn/article/details/54911788在数据的统计分析中,数据之间即变量x与Y之间的相关性研究非常重要,通过在直角坐标系中做散点图的方式我们会发现很多统计数据近似一条直线,它们之间或者正相关或者负相关。虽然这些数据是离散的,不是连续的,我们无法得到一个确定的描述这种相关性的函数方程,但既然在直角坐标系中数据分布接近一…

大家好,又见面了,我是你们的朋友全栈君。

转载自:http://blog.csdn.net/marsjohn/article/details/54911788

在数据的统计分析中,数据之间即变量x与Y之间的相关性研究非常重要,通过在直角坐标系中做散点图的方式我们会发现很多统计数据近似一条直线,它们之间或者正相关或者负相关。虽然这些数据是离散的,不是连续的,我们无法得到一个确定的描述这种相关性的函数方程,但既然在直角坐标系中数据分布接近一条直线,那么我们就可以通过画直线的方式得到一个近似的描述这种关系的直线方程。当然,从前面的描述中不难看出,所有数据都分布在一条直线附近,因此这样的直线可以画出很多条,而我们希望找出其中的一条,能够最好地反映变量之间的关系。换言之,我们要找出一条直线,使这条直线“最贴近”已知的数据点,设此直线方程为:
最小二乘法详细推导过程

这里的最小二乘法详细推导过程是为了区分Y的实际值y(这里的实际值就是统计数据的真实值,我们称之为观察值),当x取值最小二乘法详细推导过程(i=1,2,3……n)时,Y的观察值为最小二乘法详细推导过程,近似值为最小二乘法详细推导过程(或者说对应最小二乘法详细推导过程的纵坐标是最小二乘法详细推导过程)。

其中最小二乘法详细推导过程式叫做Y对x的回归直线方程,b叫做回归系数。要想确定回归直线方程最小二乘法详细推导过程,我们只需确定a与回归系数b即可。

 设x,Y的一组观察值为:
最小二乘法详细推导过程   i = 1,2,3……n

其回归直线方程为:
最小二乘法详细推导过程

当x取值最小二乘法详细推导过程(i=1,2,3……n)时,Y的观察值为最小二乘法详细推导过程,差最小二乘法详细推导过程刻画了实际观察值最小二乘法详细推导过程与回归直线上相应点纵坐标之间的偏离程度,见下图:
最小二乘法详细推导过程

 实际上我们希望这n个离差构成的总离差越小越好,只有如此才能使直线最贴近已知点。换句话说,我们求回归直线方程的过程其实就是求离差最小值的过程。

一个很自然的想法是把各个离差加起来作为总离差。可是,由于离差有正有负,直接相加会互相抵消,如此就无法反映这些数据的贴近程度,即这个总离差不能用n个离差之和来表示,见下图:
最小二乘法详细推导过程
 
一般做法是我们用离差的平方和,即:
最小二乘法详细推导过程

作为总离差 ,并使之达到最小。这样回归直线就是所有直线中Q取最小值的那一条。由于平方又叫二乘方,所以这种使“离差平方和为最小”的方法,叫做最小二乘法
用最小二乘法求回归直线方程中的a、b的公式如下:
最小二乘法详细推导过程

其中,最小二乘法详细推导过程最小二乘法详细推导过程最小二乘法详细推导过程最小二乘法详细推导过程的均值,a、b的上方加“︿”表示是由观察值按最小二乘法求得的估计值,a、b求出后,回归直线方程也就建立起来了。

当然,我们肯定不能满足于直接得到公式,我们只有理解这个公式怎么来的才能记住它,用好它,因此给出上面两个公式的推导过程更加重要。在给出上述公式的推导过程之前,我们先给出推导过程中用到的两个关键变形公式的推导过程。首先是第一个公式:
 最小二乘法详细推导过程
 

接着是第二个公式:
最小二乘法详细推导过程
 
 基本变形公式准备完毕,我们可以开始最小二乘法求回归直线方程公式的推导了:
最小二乘法详细推导过程
最小二乘法详细推导过程
 
 至此,公式变形部分结束,从最终式子我们可以看到后两项
最小二乘法详细推导过程

与a、b无关,属于常数项,我们只需
最小二乘法详细推导过程

即可得到最小的Q值,因此:
最小二乘法详细推导过程

至此,公式推导完毕。
 

最小二乘法求回归直线方程可用于所有数据分布近似直线的数据统计、分析问题,其用程序实现非常简便,属于基础统计分析算法,必须能够熟练掌握应用。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请联系我们举报,一经查实,本站将立刻删除。

发布者:全栈程序员-站长,转载请注明出处:https://javaforall.net/145253.html原文链接:https://javaforall.net

(0)
全栈程序员-站长的头像全栈程序员-站长


相关推荐

  • \r,\n,\r\n的区别

    \r,\n,\r\n的区别

    2021年9月18日
    47
  • PHP学习之一晚撸下W3chscool

    PHP学习之一晚撸下W3chscoolPHP多维数组其实简单的而言,多维数组就是由单个的数组组成的,两个数组嵌套组成一个二维数组,三个顾名思义就是三维数组。先来一个简单的数组。数字是key,引号里的是value<?php$array=array(‘1’=>”咋”,’2’=>”日”);echo$array[2];?>输出:日然后再来几个有难…

    2022年8月22日
    3
  • python 字符串 转义_python转义字符怎么用

    python 字符串 转义_python转义字符怎么用问题与背景python的字符串控制,有时候自动转义会带来很多问题,比如文件路径因为转义变得有异常,json字符串塞进json串中之后,自动的对引号加转义斜杠等,整理一下踩的一些坑。参考资料https://www.cnblogs.com/klobohyz/archive/2012/06/04/2535057.htmlpython使用r进行不转义字符串https://www.cnblogs.com/itdyb/p/5046415.htmlPython中的repr()函数解决方案与案例字

    2025年6月12日
    8
  • PetShop4分析随手贴

    PetShop4分析随手贴 PetShop4简析  跟踪顺序为1.Web/Controls/ItemsControl.ascx.cs2./BLL/Item.cs(此处用工厂实现下面的Item)3./IDAL/IItem.cs/DALFactory/DataAccess.cs(工厂)/Web/web.config(path)/SQLServerDAL/Item.cs(IItem的实

    2022年10月10日
    0
  • Java学习之SpringMVC 拦截器

    Java学习之SpringMVC拦截器0x00前言继续SpringMVC最后一点小内容,后面就该学习如何整合SSM框架了。0x01拦截器拦截器和前面提到的一个过滤器类似,但是他们还是

    2021年12月12日
    45
  • vmware虚拟机占用硬盘_虚拟机占用磁盘空间大

    vmware虚拟机占用硬盘_虚拟机占用磁盘空间大一、引言在VMware进行Ubuntu18.04的虚拟环境使用的过程中,我惊奇的发现,好像并没有怎么操作,就已经占用了20个G的空间了。在Ubuntu18.04中查看磁盘使用情况,也发现并没有到20G呀:怎么进行磁盘空间的缩小呢?二、解决这里,虽然我查询了网上的资料,但是使用vmware-vdiskmanager工具的方法我怎么也没有尝试成功。…

    2022年10月15日
    0

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注全栈程序员社区公众号